Nematode Linkage to Regenerative Agriculture:

Examples from Tropical/Subtropical Systems

¹Koon-Hui Wang, ¹Roshan Paudel, ²Josiah Marquez, ³Philip Waisen

¹University of Hawaii at Manoa, ²Hawaii Department of Agriculture, ³University of California ANR

The international "4 per 1000" Initiative

Soils for Food Security and Climate

https://4p1000.org/?lang=en

Why regenerative agriculture can be the solution to climate change?

Because soil contained 2-3 times more C than the atmosphere, increasing soil C by 0.4% per year in the top 30-40 cm of soil could stop the increase in CO_2 in the atmosphere (CIRAD, 2015).

Nematode Community Indices

- Abundance of each trophic group
- % trophic group
- Richness = # of taxa
- Simpson's index of dominance (λ)
- $\lambda = \sum P_i^2 = (\text{genus 1/total})^2 + (\text{genus 2/total})^2 \dots (\text{genus i/total})^2$
- Simpson's index of diversity (1/ λ)
- Ratio of fungivores to bacterivores (F/B)

(Neher, 2001)

Nematode Guilds

Nematode life strategies (cp values 1-5)

Colonizers (r strategist)

- cp = 1
- Short life (days)
- High reproduction rate
- Bloom in enriched conditions, tolerate pollution
- e.g. rhabditids

Persisters (k strategist)

- cp = 5
- Long life (months)
- Low reproduction rate
- Sensitive to pollutants and other disturbances
- e.g. dorylaimids

Omnivore Endorylainus cateri

Clarkes papillates

Guild = feeding behavior + cp value (life strategy) e.g. Ba₁, Om₄

Nematode Community Indices

(Nematode Faunal Analysis)

MI = maturity index
An index of community structure based on *c-p* scale.
(Bongers, 1990)

EI = enrichment index Weight abundance of Ba₁ colonizers among *c-p* 1 and 2 groups.

SI = Structure index Weight abundance of *c-p* 3 to 5 groups, as a measurement of disturbance.

CI = Channel index (Fungivores/Bacterivores)
Indicate decomposition pathways

(Ferris, Bongers, deGoede, 2001/Appl. Soil Ecol. 18: 13)

EI

Soil degradation is happening faster in the tropics than the temperate, making this region more vulnerable to climate change.

Objectives of this symposium:

Can regenerative agricultural practices --

- 1) suppress plant-parasitic nematodes (PPN)?
- 2) Increase Soil Organic Matter (SOM) organic matter > 0.4%? and
- 3) Improve soil food web structure (SI)?

Biofumigation

➤ Glucosinolate (GL)-derived isothiocyanate (ITC) from brassica cover crops is allelopathic (toxic) to many soil-borne fungi and nematodes (Kirkegaard et al., 1993).

Biofumigation by MTBP

(Macerated, Till, cover with Black Plastic)

Seeding: 10 lb/acre

Flail mower

5 weeks

Till

Cover with plastic (1 week)

Suppression of Root-knot Nematodes by Biofumigation

 More effective biofumigation if brown mustard was terminated by moving, tilling and soil was tarped by black plastic.

Relationship between Biofumigation indicator to Nematodes

Sul = sulfate
Rk = root-knot nematodes
Reni=reniform nematodes
Bact = bacterivorous nematodes
Pred= predatory nematodes

EI =Enrichment index
SI =Structure index
CI = Channel index
MI = Maturity index

Summary #1

Biofumigation:

- Suppressed Rk and Reni
- Increased bacterivorous and EI
- Negatively related to CI and MI
- Did not compromise bacterial decomposition and soil health conditions
- But it did not increase nor decrease SI.

(Waisen et al., 2022)

mustard, sorghum, velvet bean

Sunn hemp in a strip-till cover cropping system

Sunn hemp (Crotalaria juncea)

Monocrotaline

Cover crop enhance beneficial soil nematodes while suppressing plant-parasitic nematodes

Year 1

(Wang et al. 2011, Applied Soil Ecology 49: 107-117)

Sunn hemp in a strip-till cover cropping system

Summary #2

Sunn hemp in a strip-till cover cropping system

- Can suppress plant-parasitic nematodes effectively.
- Can increase omnivorous or predatory nematodes within one cropping cycle, but only increase SI in the second cropping cycle.
- Increase soil C slowly, even after 7 years of consecutive SH-vegetable crop conservation tillage practice, it did not increase soil C close to 0.4%.

0.18% increase in Soil Organic Matter

7 consecutive years of no-till (NT) or strip-till with sunn hemp compared to conventional till with bare ground practice.

Tropical Cover Crops w/ Nematode **Antagonistic Effect:**

> Sunn hemp, black oat, brown mustard, sorghum, velvet bean

Effects of Black Oat Cover Cropping & No-till following 8 years of Conservation tillage practices

Trial I 2015 Trial II 2016

Plant corn after

Effects of Black Oat Cover Cropping & No-till on Soil Properties

BO = No-till with black oats, BG = bare ground, Sol = solarization

■ BO+No-till increased SOM by 0.38% in Trial I and 0.4% in Trial II (√); and increased water holding capacity by 7.5-18%; and soil moisture on corn crop by 14-20%

Effects of No-till Black Oat and Solarization on Nematode Communities

Summary #3

Black Oat in a No-till cover cropping system

- O Did not suppress plantparasitic nematodes due to low PPN pressure on corn.
- Increase SI in the second cropping cycle.
- ✓ Increased soil C close to in Year 1 and achieved 0.4% in Year 2.
- X Did not improve water infiltration rate

BO surface organic mulch last for ~6 weeks after corn planting, thus, reduced evapotranspiration rates in the soil thus maintained higher soil moisture.

Biofumigant from Sorghum/Sorghum-Sudangrass (SSgH)

Evaluate SSgH for soil building and water conservation properties in a Strip and low-till system

Field Trial at Poamoho Station

- Treatments 7 SSgH varieties and one bare ground (BG) control.
- Terminated with a flail mower at 2.5 months.
- Strip till of 20-cm wide and 10cm deep strip for all SSgH plots. Till BG.
- Planted eggplant for 6 months.

SSgH's Water Conservation Abilities

SSgH biomass in 2.5 months

Throughout 5 months of eggplant

Soil C Year 1

Year 1

Nematode Community Analysis

(combined 6.5 months of sampling dates)

Trt	RKN	Reni	Bac	Fungi	Omni	Rich	EI	SI	CI
BG	35 a	426 a	172 a	111 b	6 b	9 a	54 ab	25 a	55 a
512	63 a	293 abc	306 a	171 ab	13 ab	10 a	58 ab	24 a	50 a
LA	40 a	422 ab	243 a	198 ab	19 ab	10 a	58 ab	30 a	52 a
5355	314 a	267 bc	259 a	194 ab	25 ab	9 a	61 a	30 a	51 a
542	49 a	343 ab	293 a	230 ab	19 ab	9 a	49 b	27 a	63 a
BK	79 a	275 abc	252 a	239 a	27 a	11 a	55 ab	29 a	58 a
NX2	105 a	337 ab	264 a	243 a	27 a	10 a	54 ab	32 a	58 a
Piper	56 a	200 c	328 a	251 a	17 ab	10 a	59 ab	24 a	49 a

Year 2

Nematode Community Analysis

(combined 6.5 months of sampling dates)

Trt	RKN	Reni	Bac	Fungi	Omni	Rich	EI	SI	CI
BG	144 a	427 a	138 a	83 c	3 c	7 c	54 a	13 d	37 a
53514	113 a	351 a	104 a	144 abc	12 ab	9 bc	59 a	26 bc	48 a
ВК	119 a	543 a	226 a	219 a	10 bc	10 ab	58 a	18 cd	44 a
5355	83 a	319 a	190 a	137 bc	13 bc	10 ab	63 a	32 ab	33 a
542	126 a	396 a	246 a	168 ab	6 bc	9 b	63 a	19 cd	37 a
LA	69 a	327 a	200 a	145 abc	16 b	9 ab	61 a	25 bc	41 a
NX2	101 a	452 a	259 a	166 ab	38 a	11 a	63 a	42 a	33 a
Piper	13 a	408 a	190 a	211 ab	19 ab	10 ab	58 a	27 bc	42 a

Relationships b/t Soil Food Web Structure, edaphic factors & Eggplant Yield in a SSgH Striptill System

- Eggplant yield was positively related to total microbial biomass (TPLFA), volumetric soil moisture (VSM), and abundance of bacterivorous nematodes (Bact).
- Root-gall index (RGI) was reduced at higher SI, CI and abundance of omnivorous nematodes.

(Paudel et al., 2022)

Relationships b/t Soil Food Web Structure, edaphic factors & Eggplant Yield in a SSgH Strip-till System

- Eggplant yield was positively related to arbuscular mycorrhizal fungi biomass (AMF), soil microbial respiration (CO2), infiltration (I) and volumetric soil moisture (VSM), and abundance of fungivorous nematodes.
- SSgH biomass was negatively related to root-gall index (RGI), but positively related to Gbacteria.

(Paudel et al., 2023)

First two canonical analysis explained 98.750% of variance

Summary #4

Sorghum in a Stripand Low-till system

- Suppression of PPN was more apparent in Year 2, negatively related to G-bacteria.
- Increase SI in the second cropping cycle.
- Increased soil C in Year 1 (close to 0.4%) but not in Year 2.
- Improve water infiltration rate, microbial respiration, microbial biomass but results varies by SSgH varieties.

Summary #5

3 months after cover cropping & 4 weeks after soil incorporation

VB increased arbuscular mycorrhizal fungi (AMF), saprophytic fungi (SF), and resulted in a higher fungi: bacteria (F/B) microbial biomass ratio.

In the CCA scatter plot, soil health of VB was most segregated from BG.

Increased soil C by 0.38%.

Microbial biomass (PLFA assay)

		ACT		Fungi	AMF			
Trt	DIV	(ng/g)	GN (ng/g)	(ng/g)	(ng/g)	GP/GN	S/U	F/B
BG	1.11 b	140.51a	120.28 b	13.05 b	0.00 b	3.68 a	9.16 a	0.03 b
MG	1.14 b	132.43a	145.73 b	51.80 ab	3.79 b	3.53 a	9.26 a	0.06 b
SG	1.16 b	153.45ab	217.39 ab	27.96 b	4.86 b	2.43 ab	5.91 ab	0.04 ab
SH	1.13 b	157.60ab	201.29 ab	22.70 b	0.40 b	2.77 ab	7.42 ab	0.03 b
VB	1.30 a	141.66b	288.49 a	105.96 a	33.06 a	1.89 b	4.17 b	0.13 a

Stress/fungal dominated

DIV = Diversity

ACT= Actinomycete

GN = Gram - bacteria

GP = Gram + bacteria

AMF = Arbuscular mycorrhizal fungi

S/U = Saturated/Unsaturated PLFA

F/B = Fungi/Bacteria PLFA

First two canonical analysis explained 89.43% of variance

Regenerative Agriculture

Happy Soil = Happy Farmers

Overall

Summary

- High C: N tropical cover crops (sorghum, black oat) as well as velvet bean are most effective in increasing soil C.
- Strip-till cover cropping allows allelopathic compounds from SG, SH, VB to suppress PPN while reducing disturbance to soil food web compared to conventional tillage.

 Low-till might not protect deep rooted cash crops from PPN, but induction of PGPR (G+ or G-) or AMF by strip-till cover cropping might have an additional benefits of regenerative ag for nematode management. Acknowledgement

This project is supported in part by OREI (Award 20215130035225), WSARE (GW20-212; SW 20-911; GW22-233; GW18-026; WESP 19-01), NRCS CIG (NR 1892510002G004; NR1992510002G001) and in part by CTAHR Supplement fund (9022H, 9034R, 9048-H, POW16-964).

