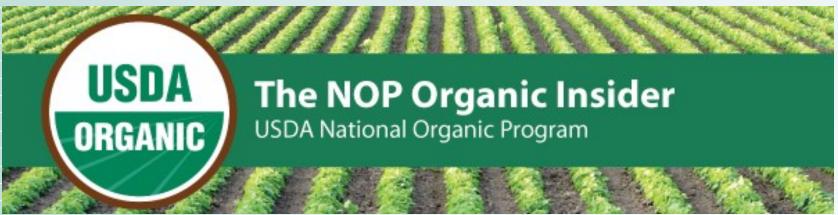

Nutrient Source for Organic Farming

Amjad A. Ahmad, PhD University of Hawaii at Manoa alobady@hawaii.edu

Fertilizer Type: Synthetic vs. Organic

Fertilizer Application Calculation:


Apply 50 Lb. of Urea vs 50 Lb of nitrogen from Urea, Blood meal (12% N) and Sustane 8% N)

1) 50 lbs. of Urea/acre.

2)

4)

What to use in organic farming?

NOP =National Organic Program

OMRI = Organic Materials **Review Institute**

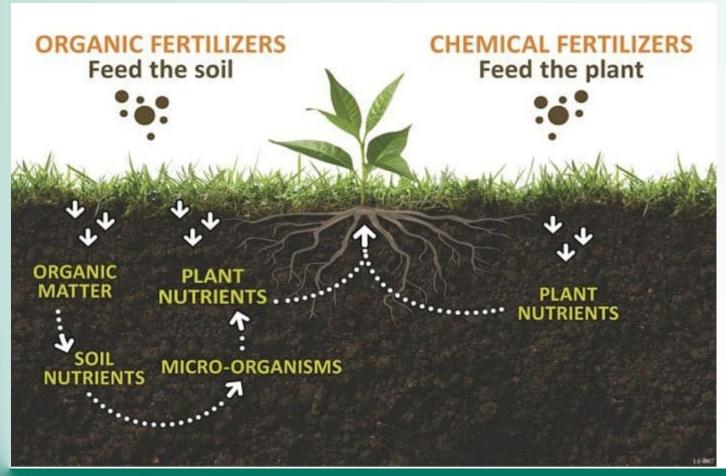
For Organic Use

Local Inputs

Composts

Biochar

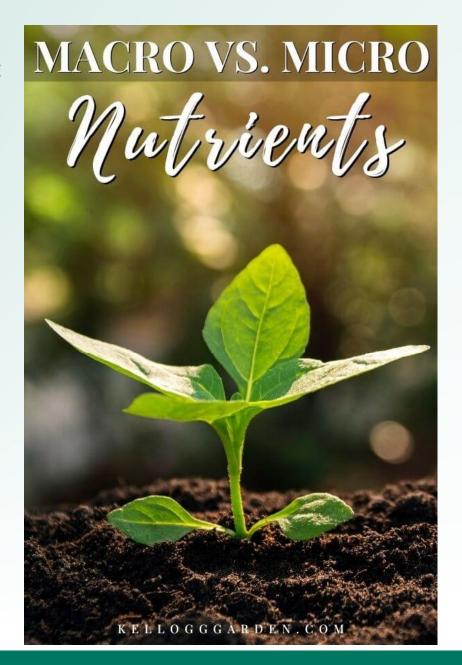
Tankage



Invasive algae

Soil Health and Organic Fertilizers:

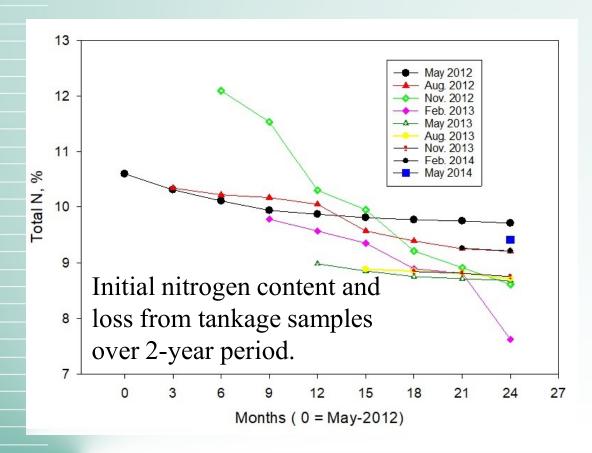
Nutrient release/availability for plant uptake from organic fertilizers is linked with soil micro-organisms/soil health.



Macro- & Micro-Nutrients:

Macro-nutrient are required by the plant with large quantities for optimum function, growth, and yield. N, P, K, Ca, Mg, and S.

Micro-nutrient are required with small quantities for optimum function, growth, and yield.


Fe, Mn, Cu, Zn, B, Cl, and Mo.

Source of Nitrogen (N) for Organic Farming

Meat & Bone Meal (tankage):

- Approved for Agriculture
- Produced Locally
- N-P-K = 10-3-1 & C:N Ratio: 5:1

Locally produced meat and bone meal by-products (tankage).

Tankage-Nitrogen Application Table

Nitrogen (N) (lb/acre)	Tanakage (lb/acre)	Phosphorus (P) (lb/acre)	Potassium (K) (lb/acre)	Applying
50	665	20	6.50	
100	1,335	40	13.50	A 11 .1
150	2,000	60	20.00	All other macro- &
200	2,665	80	26.50	micro-
250	3,335	100	33.50	nutrient
300	4,000	120	40.00	

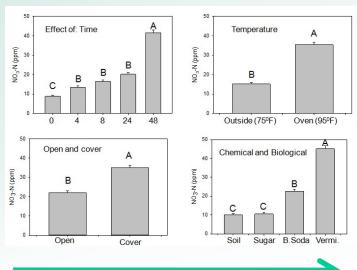
- Calculations in the table were made based on 75% nitrogen (N) mineralization rate and 10% N in tankage.
- Simple cross-multiply to calculate the application rates of N from tankage.
- 10% N in tankage is among the highest N content in most available organic fertilizers.

Importance of Liquid Fertilizer:

- Provide nutrient for immediate uptake.
- Suitable for longterm crops.
- Suitable for mulching.
- Suitable for dripirrigation.

Liquid Organic Fertilizer:

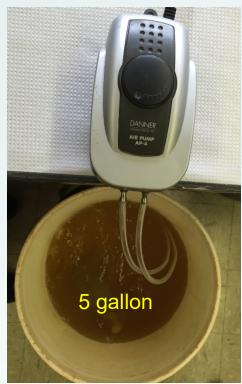
• Situation:


There's a need for liquid organic fertilizer, with high nitrogen content, that local growers can make on their own.

Tankage produced locally, relatively cheap & high N content

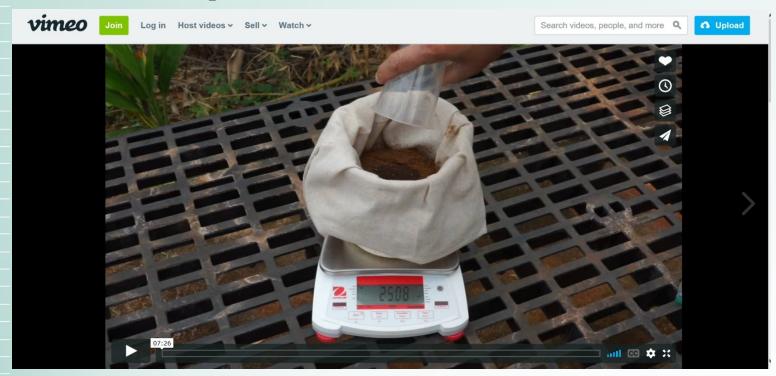
Time, temperature, cover & other agents were tested

Recipe for high NO₃-N liquid organic fertilizer was achieved



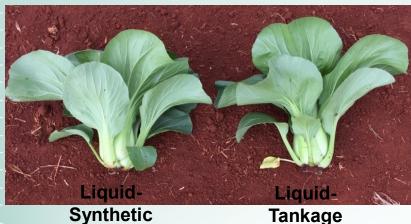
Liquid Fertilizer from Tankage: Liquid organic fertilizer recipe:

- 1.5 lbs of tankage into 10 gallon water.
- Add about 1 ounce vermicompost.
- Air for 12-24 hours.
- Strain & apply with drip irrigation.



Video on how to make your own liquid organic fertilizer:

Vimeo Link: https://vimeo.com/245473495



Please note:

- The liquid organic fertilizer is meant to be as a supplemental application of nutrient and not main source.
- Do not spray the liquid organic fertilizer into plant foliar, since it has high nitrogen content.

Results-Lettuce, Pak Choi, and Daikon

Lettuce and Pak choi were harvested after 4 and 5 weeks of seedlings transplant, respectively

Daikon was harvested after 9 weeks of planting

Watermelon On-Farm Trial on Molokai:

	Fruit	BRIX/Sample Location				Blossom	
	Peduncle	-				Calyx	
	End					End	
Melon #	Weight	1	2	3	4	5	Average
	(lbs)						
1	24	10.2	12.0	12.2	12.3	12.1	11.8
2	19	10.8	12.0	12.2	11.8	10.8	11.5
3	18	11.2	13.0	13.0	13.0	12.0	12.4
Average	20.3	10.7	12.3	12.5	12.4	11.6	

Blood Meal and Feather Meal:

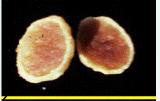
Blood meal: Slaughtering houses blood waste. Feather meal: Poultry slaughtering houses

Animal Manure:

Table: Macro-nutrients in chicken and dairy manure collected in Hawaii

	Percentage (%)						
Manure type	N	C	P	K	Ca	Mg	Na
Chicken	3.0	21	1.5	1.9	14	0.7	0.4
Dairy	1.8	15	0.5	1.8	2	1.0	0.5

Factory Processed Animal Manure:



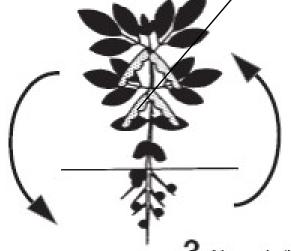
Concentrated nutrient content in processed animal manures.

Nitrogen fixing Rhizobium Bacteria (Biofertilizer):

76% of air is N, but it must be "fixed" in order to be available to plants.

N fixation by bean plants

Fixing


1 Carbon dioxide, water, and solar energy fuel plant photosynthesis

Not Fixing

2

Products of photosynthesis from the plant fuel N₂ fixation by rhizobia in root nodules

4

Fixed N in the form of ammonia produced by rhizobia is used by the plant

3 N₂ gas in the air is "fixed" by rhizobia

Nitrogen fixation with various Rhizobia strains:

	N N N N N N N N N N N N N N N N N N N
CARBOHYDRATES	Microbes "fix" nitrogen in nodules on the roots of the pulse crop.

Grain legume	N-fixing ability (kg ha ⁻¹)
Soybean (Glycine max)	71–108
Pea (Pisum sativum)	90–128
Pigeon pea (Cajanus cajan)	120–170
Lentil (Lens culinaris)	8–14
Rice bean (Vigna umbellata)	13–30
Cowpea (Vigna unguiculata)	14–35
Faba bean (Vicia faba)	23–79
Common bean (Phaseolus vulgaris)	20–60
Groundnut (Arachis hypogaea)	150-200
Chickpea (Cicer arietinum)	64–103
Mung bean (Vigna radiata)	19–54
Black gram (Vigna mungo)	16–79

M Guina ability (lea bast)



Source of Phosphorus (P) for Organic Farming

Source of Phosphorus (P) for Organic Farming

Phosphate Rock:

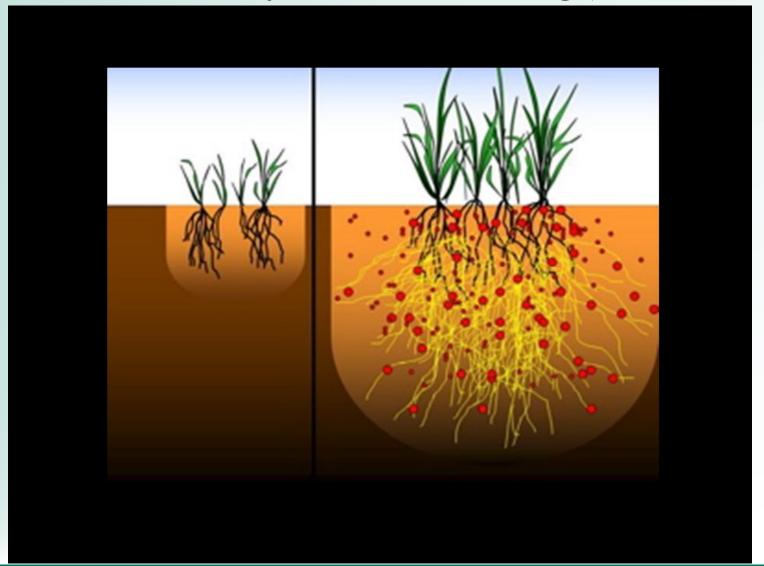
The solubility of rock P is low, so its use requires some soil amending actions such as keeping relatively low pH or mixing the P rock with compost or other soil amendments before application.

Animal Manures:

Phosphorus in manures is usually between 1-5% and the release rate is relatively fast.

Poultry manure generally has lower N/P ratios than cattle manure due to its higher P content.

Green Manure and Compost:


In general most green manures are low in P content (0.2-0.5%).

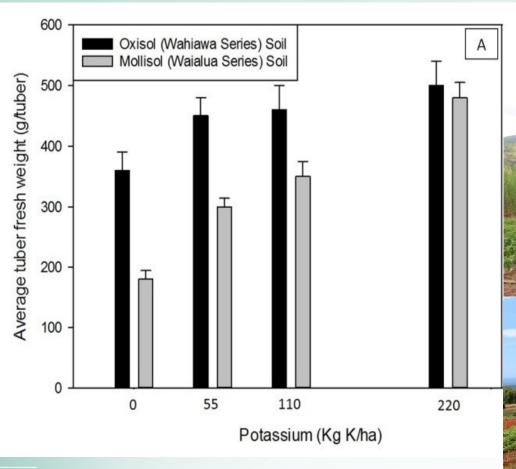
In compost it varies based on the compost stock materials.

Biofertilizer (Mycorrhizae Fungi):

Source of Potassium (K) for Organic Farming

Greensand:

It's recommended as a natural K source (~5% K) for organic agriculture. However, K solubility is low.

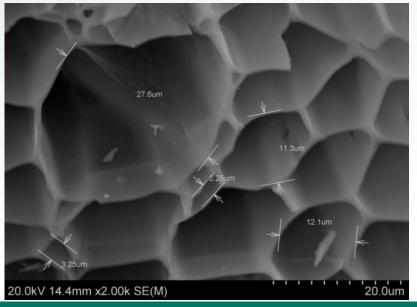

Invasive Algae:

Species	Species Washed/ Unwashed		% 0/ ₀					
		N	C	P	K			
Ogo	Unwashed	1.4	20.4	0.11	12.4			
Ogo	Washed	1.3	18.2	0.09	9.1			
Eucheuma	Unwashed	1.0	21.1	0.07	18.0			
Eucheuma	Washed	0.7	17.7	0.06	16.9			
Kappaphyc us	Unwashed	1.3	22.1	0.07	14.8			
Kappaphyc us	Washed	1.2	21.7	0.06	14.1			

Evaluated washing on changes in nutrient & salt content.

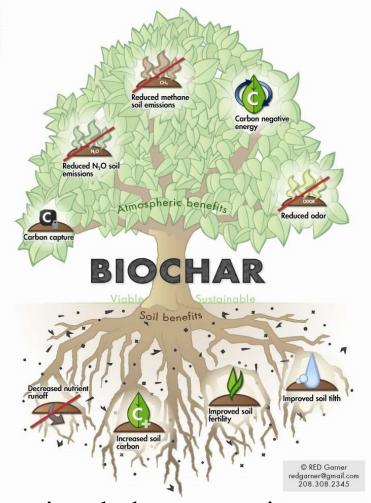
Invasive Algae – Sweet Potato:

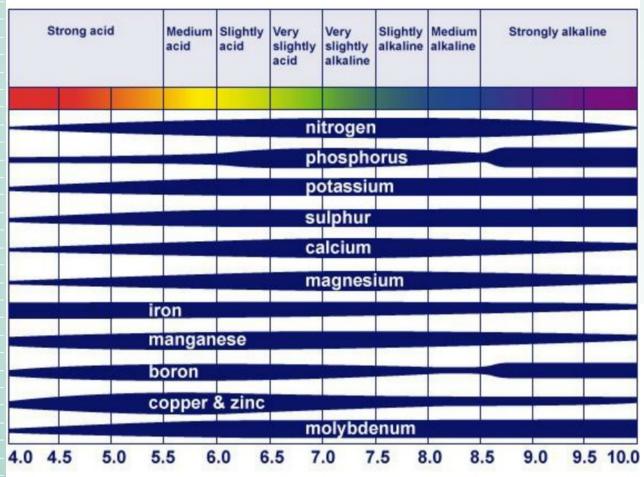
Sweet potato field trials using Algae as K source on Oahu


The effect of different Potassium (K) application rates (Kg K/ha) on average sweet potato tuber fresh (A) and dry (B) weight under Oxisol and Mollisol soils.

Biochar: organic materials (e.g., corncob, manure, scrapped wood) burned in the absence of or low oxygen.

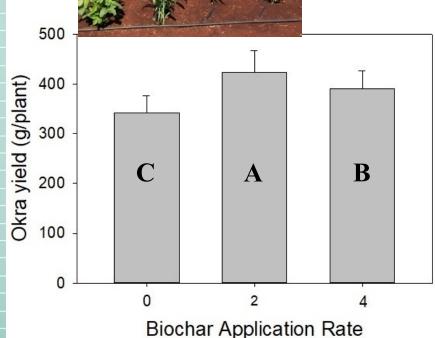
Properties and nutrient content vary with:


- Feedstock (e.g., manure vs. wood)
- Highest treatment temperature (e.g., 400 °C vs. 700 °C)


Biochar: A Soil Amendment

Reported to improve soil quality, nutrient balance, nutrient availability, soil water holding capacity & soil health, especially in low fertility, acidic & heavy clay soils.

Soil pH & Nutrient Availability:



Limestone (CaCO₃)

Applications of Biochar in Field & Greenhouse Trials:

Okra, sweet corn & soybean crops in a field trial at Poamoho Research Station on Oahu.

Okra yield (g/plant) under different application rates of biochar.

Oka plant growing under different application rates of biochar.

Thanks for listening

