Regenerative Agriculture using Sorghum as a Cover Crop in a Low Till System

Roshan Paudel, Koon-Hui Wang Department of Plant and Environmental Protection Sciences, University of Hawai`i at Mānoa

Benefits of Sorghum/Soghumsudangrass hybrids (SSgH) as Cover crops

Larger amount of biomass – adds organic matter= Soil builder.	Deep root system –drought tolerant and nutrient scavenging.	Poor /non-host to Meloidogyne incognita.
Root leachate is weed suppressive (sorgoleone)	Dual purpose cover crop (forage, grain, energy crop)	Tolerate high and low soil pH

Sorghum/Sorghum-sudangrass (SSgH) as a cover crop

SSgH Biofumigation

Busk and Moller, 2002

Leaf tissues release HCN (nematicidal) upon hydrolysis of dhurrin (= Biofumigation).

Shoot tissues release HCN (nematicidal) upon hydrolysis of dhurrin (= **Biofumigation**)

Large amount of biomass – adds organic matter= Soil builder

Objectives

Evaluate SSgH varieties most efficient in

- 1) Suppressing root-knot and reniform nematodes
- 2) Enhancing soil health through low-till cover cropping.

Evaluate soil amendment of SSgH for plant-parasitic nematodes suppression in the greenhouse

Sorghum/Sorghum-sudangrass hybrids (SSgH) Screening

Forage Sorghum

- Big Kahuna Plus
- Cow Vittles
- Bundle King
- Monster II

Sudangrass

• Piper

- Latte
- Latte BMR
- 51214
 - 53514

Energy sorghum

- NX 4264
- NX-D-61

SSgH Variety Screening Trial

Effect of SSgH Variety and Plant Age on Rootknot Nematode (*M. incognita*) Suppression

- 'NX2' and 'LA' were most effective in suppressing root-knot nematode female development.
- Allelopathic Effects of SSgH against root-knot nematodes is age dependent for most varieties except for 'NX2'.

Evaluate SSgH for soil building and water conservation properties in a low-till system

Field Trial at Poamoho Station

- Treatments 7 SSgH varieties and one bare ground control (3.6 × 1.2 m²)
- Replicated 4 times in a randomized complete block design (RCBD).
- Terminated with a flail mower at 2.5 months.
- Strip till of 20-cm wide and 10-cm deep strip for all SSgH plots.
- Planted eggplant seedlings.

Cover Crop Biomass

- 542 produced the highest biomass followed by 'NX2' and 'LA'.
- 'Piper' and '512' produced the least.

Soil Carbon

NX2 and Piper increased soil C throughout the SSgH-eggplant cropping cycle.

Soil Moisture

SSgH (512) increased volumetric soil moisture throughout the SSgH-eggplant cropping cycle.

Soil microbial respiration

- All SSgH enhanced soil microbial respiration than BG.
- 'NX2' had the highest respiration rate.

SSgH in a low-till system improved water infiltration

• 'NX2', 'LA', and 'Piper' increased water infiltration.

Summary

Low-till field trial

- 'NX2' sorghum increased microbial respiration and soil carbon.
- SSgH cover cropping in a low-till system improved the water infiltration – '512' and 'NX2' sorghum showed the greatest improvement.
- Terminating SSgH cover crop in a low till system improve soil health better than in a no-till system but longer term of continued SSgH low-till practice is underway to track if it can also improve crop yield.

Acknowledgement

Dr. Brent Sipes Sabina Budhathoki Donna Meyer Justin Mew

Sustainable Agriculture Research & Education

ONRCS

This project is supported by NRCS CIG Hawaii NR1992510002G001, CTAHR Hatch, Multistate (NE2140), Plan of Work (HAW9048-H, 9034-R and POW 16-964), and WSARE graduate student grant GW20-212.