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Abstract

Native forests of Hawaiʻi Island are experiencing an ecological crisis in the form

of Rapid ʻ�Ohiʻa Death (ROD), a recently characterized disease caused by two fun-

gal pathogens in the genus Ceratocystis. Since approximately 2010, this disease

has caused extensive mortality of Hawaiʻi’s keystone endemic tree, known as

ʻ�ohiʻa (Metrosideros polymorpha). Visible symptoms of ROD include rapid brow-

ning of canopy leaves, followed by death of the tree within weeks. This quick pro-

gression leading to tree mortality makes early detection critical to understanding

where the disease will move at a timescale feasible for controlling the disease. We

used repeat laser-guided imaging spectroscopy (LGIS) of forests on Hawaiʻi Island

collected by the Global Airborne Observatory (GAO) in 2018 and 2019 to derive

maps of foliar trait indices previously found to be important in distinguishing

between ROD-infected and healthy ʻ�ohiʻa canopies. Data from these maps were

used to develop a prognostic indicator of tree stress prior to the visible onset of

browning. We identified canopies that were green in 2018, but became brown in

2019 (defined as “to become brown”; TBB), and a corresponding set of canopies

that remained green. The data mapped in 2018 showed separability of foliar trait

indices between TBB and green ʻ�ohiʻa, indicating early detection of canopy stress

prior to the onset of ROD. Overall, a combination of linear and non-linear ana-

lyses revealed canopy water content (CWC), foliar tannins, leaf mass per area

(LMA), phenols, cellulose, and non-structural carbohydrates (NSC) are primary

drivers of the prognostic spectral capability which collectively result in strong con-

sistent changes in leaf spectral reflectance in the near-infrared (700–1300 nm)

and shortwave-infrared regions (1300–2500 nm). Results provide insight into the

underlying foliar traits that are indicative of physiological responses of

M. polymorpha trees infected with Ceratocycstis and suggest that imaging spec-

troscopy is an effective tool for identifying trees likely to succumb to ROD prior to

the onset of visible symptoms.
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INTRODUCTION

Metrosideros polymorpha (common name: ʻ�ohiʻa) is the
keystone tree species of Hawaiian forests and comprises
the majority of remaining native forest canopy (Dawson
et al., 1990). The range of ʻ�ohiʻa is extremely broad,
inhabiting areas from sea level to 2500 m in elevation,
dominating wet forests while also being common to dom-
inant in dry forests (Friday & Herbert, 2006; Mueller-
Dombois & Fosberg, 1998). The habitat these endemic
trees provide is crucial to fauna and flora in Hawaiian
forest (Dawson et al., 1990; Pratt & Jacobi, 2009). ʻ�Ohiʻa
is the first species to colonize new lava fields and is
largely responsible for successional processes that lead to
the diverse closed-canopy native forests (Friday &
Herbert, 2006; Stemmermann, 1983).

Over the past decade, ʻ�ohiʻa stands have experienced
abnormally high rates of mortality (Loope et al., 2016). In
2010, a new disease, coined Rapid ʻ�Ohiʻa Death (ROD),
was noted in ʻ�ohiʻa stands present across eastern portions
of Hawaiʻi Island (Camp et al., 2019; Keith et al., 2015).
The disease was determined to be caused by two distinct
species in the pathogenic fungal genus Ceratocystis: the
vascular wilt fungus, Ceratocystis lukuohia, and the can-
ker pathogen, Ceratocystis huliohia (Barnes et al., 2018;
Keith et al., 2015). Ceratocystis lukuohia is the main cause
of stand-level mortality events, while C. huliohia is asso-
ciated with smaller-scale, localized mortality events
(Barnes et al., 2018; Fortini et al., 2019; Loope et al.,
2016). Distinct from other previously documented
landscape-scale ʻ�ohiʻa dieback events (Jacobi, 1983;
Mueller-Dombois, 1980; Mueller-Dombois et al., 2013),
ROD occurs as C. lukuohia or C. huliohia spores enter
and colonize the vascular tissue of the tree and interrupt
water flow through the xylem (Barnes et al., 2018;
Mortenson et al., 2016). Visible symptoms occur rapidly
and are characterized by asymmetrical browning and
wilting of the canopy followed by tree death in weeks
(Barnes et al., 2018; Mortenson et al., 2016). This brown
stage is noticeable and relatively unique to ROD infection
(Asner et al., 2018; Perroy et al., 2020). The disease cau-
sed by ROD is especially alarming owing to its current
unpredictability and capacity for swift mortality of ʻ�ohiʻa
trees and stands. ʻ�Ohiʻa trees in a given stand appear to
die in a haphazard pattern, across all size and age classes
with an average annual mortality rate of about 10%,
though some stands experience rates as high as 42%
(Vaughn et al., 2018; R. F. Hughes personal communica-
tion). These rates are much higher than other tree dis-
eases (Loope et al., 2016). The loss of ʻ�ohiʻa from forests
will accelerate the establishment of invasive plants in
Hawaiian forests and will degrade watersheds (Boehmer
et al., 2013; Fortini et al., 2019; Jacobi, 1983).

Current research on the disease is focused on under-
standing the ROD infection across Hawaiʻi Island and
how to slow its spread. Maps of brown canopies have been
created for the island (Vaughn et al., 2018), but by the time
an ʻ�ohiʻa canopy turns brown, it is too late to save the tree.
Detecting visually asymptomatic canopies is essential to
understanding where the disease will move at a timescale
feasible for controlling the disease. Methods of detecting
plant pathogens and complex biological signals and pro-
cesses have utilized imaging spectroscopy for crop tree dis-
ease detection (Calder�on et al., 2015; L�opez-L�opez
et al., 2016; Zarco-Tejada et al., 2018), species identifica-
tion from leaf reflectance (Cavender-Bares et al., 2016),
changes in physiological function and water status (Barnes
et al., 2017), and detection of plant pathogens for manag-
ing forest ecosystem threats (Fallon et al., 2020). Access to
ROD-infected trees across the island remains a challenge
due to the range of ʻ�ohiʻa over many thousands of hectares
of remote forest often located on private property, making
crowns difficult to reach on foot. Remote sensing is a par-
ticularly useful tool owing to its ability to monitor and
map large areas of land in very fine detail (Asner &
Martin, 2016). While unmanned aerial vehicles are quick
to deploy and offer detailed high-resolution imagery
(Perroy et al., 2020), they are limited to mapping small
areas at a time and are not permitted over certain federal
and most private lands. Additionally, helicopter surveys
are limited by the ability of the human eye to spot brown
canopies at a distance, by a lack of spatial accuracy, and
expense of flight time. Data from Earth-orbiting satellites
are readily available, but these data are too spatially and
spectrally coarse to pinpoint individual browning trees.
The Global Airborne Observatory (GAO; Asner
et al., 2012), which employs sensors in a fixed-wing air-
plane, is uniquely able to fill this gap with its ability to col-
lect laser-guided imaging spectroscopy (LGIS) data.

Laser-guided imaging spectroscopy data are derived
from the fusion of imaging spectroscopy data from a visible-
to-shortwave infrared (VSWIR) imaging spectrometer to
three-dimensional information provided by a boresight-
aligned light detection and ranging (LiDAR) scanner (Asner
et al., 2012), allowing for the precise spatial position of each
spectrum to be known. This type of imaging spectroscopy
utilizes contiguous high-spectral-resolution measurements
of reflected solar radiation spanning 427 channels in the
400–2500 nmwavelength region in 5 nm increments to esti-
mate canopy traits, such as water, nutrient, and defense
compounds (Asner et al., 2017; Kokaly et al., 2009;
Ollinger, 2011), which allow for the detection of changes in
foliar chemistry. Asner et al. (2018) demonstrated that ROD
infection exhibits distinct spectra at leaf and canopy scales
and defined a spectral signature to map ʻ�ohiʻa trees likely
infected by ROD and that the leaf-level spectral differences
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were related to underlying foliar chemical differences.
Foliage from healthy canopies had higher LMA and higher
concentrations of chemical traits important for growth,
including chlorophyll (Chl), non-structural carbohydrates
(NSC), and leaf water content (LWC). Green canopy leaves
also contained higher levels of phenols and tannins, while
brown leaves had higher concentrations of carbon (C) and
recalcitrant compounds such as cellulose. These leaf traits
are associated with structure and defense. Using the canopy
spectral signature, Vaughn et al. (2018) applied the full
VSWIR reflectance spectrum collected from airborne data
and a machine learning algorithm to map the browning
canopies around Hawaiʻi Island with accuracies of 86% and
higher. These were essential first steps, but to adequately
contain the spread of ROD, we need to understand when
and where the disease will spread prior to browning of the
canopies as well as identifying possible foliar traits that
underpin the spectral differences that may, in turn, be indic-
ative of the physiological response of the trees.

Given the significant differences in foliar chemistry
exhibited between leaves from green and visibly brown
state canopies (Asner et al., 2018), our goal was to deter-
mine if there is a detectable spectral and related chemical
signal prior to visible browning in ʻ�ohiʻa at the canopy
scale. We hypothesized that the spectral signature and
modeled indices of foliar traits of canopies that eventually
succumb to the disease and turn brown (hereafter, defined
as “to become brown” or TBB) would differ significantly
from those of healthy canopies. Moreover, we expected to
detect this signal in ROD-infected trees as differences in
both the spectral signature and the foliar traits previously
established by Asner et al. (2018) as the canopy-based sig-
nature for ROD. As LGIS measurements detect and
express changes in foliar chemistry, we endeavor to use
this knowledge to develop an understanding of the rela-
tionship between spectral reflectance and underpinning
foliar chemical traits associated with the TBB canopy
state. Analyzing traits individually, we predicted the
modeled canopy’s chemical trait indices associated with
light capture and growth (i.e., Chl and LWC) would
decrease, and those linked with defense (i.e., phenols and
cellulose) would increase due to an increase in stress
before completely succumbing to the disease (turning vis-
ibly brown). However, multiple non-linear interactions
among foliar chemicals may eventually explain the differ-
ences in canopy states and their associated canopy reflec-
tance spectra. Ultimately, by extracting remotely sensed
spectra and related modeled chemistry data from ʻ�ohiʻa
canopies, we present a method for creating a diagnostic
measure of canopy stress prior to the onset of visible
symptoms. Results will support the development of the
mapping this signal, which is crucial information to pre-
vent future spread of ROD.

METHODS

Our study utilized 2018 and 2019 airborne LGIS data col-
lected from across Hawaiʻi Island (Figure 1) to evaluate
the potential for detecting spectral and underlying foliar
chemical trait differences between green canopies and
those that were visibly green in 2018 but were TBB in
2019 (Figure 2a,b). The separability between green cano-
pies and those that would become brown was evaluated
using VSWIR spectra covering 400–2500 nm in 5-nm con-
tiguous wavebands (Figure 3). To provide insight into the
underlying chemical properties of the spectral separabil-
ity, we calculated indices for 11 foliar traits known to be
indicative of ROD (Asner et al., 2018) using chemometric
models derived from forests in Northern Borneo (Martin
et al., 2018). Although the range of values in modeled
canopy-level trait were comparable to those measured
and modeled in the leaf-level studies of green and brown
ʻ�ohiʻa leaves conducted by Asner et al. (2018), the abso-
lute values were shifted. For this reason, we chose to use
chemical indices. Machine learning was then used on
both the canopy reflectance and canopy foliar trait
datasets to evaluate the potential for modeling and even-
tually mapping this early warning signal of the disease.

Imaging spectroscopy data

We used canopy-level LGIS data collected by the GAO in
January of 2018 and 2019 to evaluate spectrochemical dif-
ferences between green ʻ�ohiʻa canopies and canopies that
were visibly green in 2018 but became brown (TBB) in
2019. The GAO data are collected with co-aligned instru-
ments: a VSWIR imaging spectrometer and a dual-
channel airborne LiDAR scanner, allowing for the simul-
taneous spatio-temporal fusion of the data (Asner
et al., 2012). This enables computation of the precise 3-D
location of the spectrometer data with very high precision
that is essential in order to mask canopy gaps and
shadows. Canopy mask is responsible for the intra- and
inter-canopy shadowing, and identifying regions of short
or absent canopies that can contaminate the spectral sig-
nal. During each flight campaign (in 2018 and 2019),
LGIS data were collected over forested areas throughout
the island. During flight, the aircraft’s speed was
maintained within 10% of the 60 m s�1 nominal air speed
and within 200 m of the nominal planned elevation of
2000 m above ground level. The LiDAR was operated at
an effective pulse frequency of 200 kHz, a scan frequency
of 34 Hz, 30 percent overlap, and field-of-view of
38 degrees to match the 34-degree field of view of the
VSWIR after clipping 2 degrees from the scan edges.
These settings yielded a mean density of 3.3 pulses m�2
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and a VSWIR resolution of 2 m. The VSWIR data were
collected in 427 channels between 350 and 2485 nm at
5 nm increments (full-width at half max).

The VSWIR radiance data were averaged by neigh-
boring pairs to 10 nm to improve the signal-to-noise,
yielding a final dataset of 214 bands. These data were
atmospherically corrected to surface reflectance using the
ACORN-6LX model (Imspec LLC) and computed obser-
vation angles and elevation with an iterative procedure
applied to each flight line to set the aerosol optical
parameter using the visibility parameter as well as

minimize the cross-track brightness (Colgan et al., 2012;
Vaughn et al., 2018).

The LiDAR point cloud data were processed to 1-m
resolution digital surface maps of ground elevation, can-
opy surface elevation, and canopy surface height above
ground using the LAStools software suite (Rapidlasso
GmbH). The canopy surface data were combined with
the time of day to precisely identify pixels that represent
canopy locations within the unshaded and unobstructed
view of the VSWIR spectrometer (Asner et al., 2012). A
minimum top of canopy height threshold of 1.5 m was

F I GURE 1 Map denoting the 11 regional groupings of hand delineated “to become brown” (TBB) in 2019 and green ʻ�ohiʻa canopies

distributed across Hawaiʻi Island. Each regional grouping contains 60 TBB and 60 green ʻ�ohiʻa canopies except for group 7 which is split in

half. White polygons indicate 2018 Global Airborne Observatory (GAO) flight line data. Background imagery is from Google,

DigitalGlobe (2017)
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applied to the imagery to remove bare ground and short
non-forest vegetation such as exposed grass cover. To
ensure that we mapped only live canopies, we used maps
of 2018 brown and dead trees, created by Vaughn
et al. (2018) to mask out 2018 brown and dead tree pixels.
Finally, to remove pixels of low leaf area and non-foliated
canopy, we used a threshold for Normalized Difference
Vegetation Index (NDVI). In tropical forests, NDVI
thresholds of 0.75–0.80 have been used to ensure the
inclusion of highly foliated canopies (Asner, Anderson,
et al., 2015, Asner, Martin, et al., 2015; Martin
et al., 2018). The ʻ�ohiʻa canopies tend to have lower over-
all NDVIs, due to foliar pubescence and lower overall
nutrient concentrations than other species (Cordell
et al., 2001a; Vitousek et al., 1992). Moreover, we did not
want to eliminate the crowns that could have potentially
a lower NDVI due to disease. Therefore, for this study, a
conservative threshold of 0.50 was selected after examin-
ing the distribution of NDVI values in the pixels
(Appendix S1: Figure S1). Spectra with abnormally low
reflectance values <10% at 800 nm were also removed.

Prior to analysis, bands in the range of atmospheric
water absorption and noisy ends of the spectrum were

removed leaving wavelengths of 440–1320, 1500–1760, and
2040–2440 nm and cross-spectrum brightness normaliza-
tion (BN) was applied to each trimmed spectrum (pixel) so
that the magnitude (Euclidean norm) of each brightness-
normalized spectrum was 1.0, using the formula:

v
*
n ¼ v

*
r

v
*

r2

�
�
�

�
�
�
0
,

where v
*

r is the original reflectance spectrum as a vector
and v

*
n is the brightness-normalized reflectance spec-

trum. The process BN follows minimizes differences in
observed brightness in reflectance data due to canopy leaf
orientation and depth, and has been found to improve
chemical retrievals using airborne imaging spectroscopy
(Asner, Anderson, et al., 2015; Asner, Martin, et al., 2015;
Feilhauer et al., 2010).

Canopy spectral evaluation

We measured the degree of separation between green
and brown leaves and canopy spectra using a spectral

F I GURE 2 Sample foliar trait imagery containing “to become

brown” (TBB) in 2019 and green ʻ�ohiʻa canopies. Imaging

spectroscopy data were collected in 2018 by the Global Airborne

Observatory (GAO). (a) Color infrared (CIR), (b) red, green, and

blue colors (RGB), (c) canopy water content (CWC) (L m�2), and

(d) cellulose (%)

F I GURE 3 Variation between reflectance for n = 7984

green and n = 5530 “to become brown” (TBB) ʻ�ohiʻa pixels

across Hawai’i Island are shown for (a) original spectra,

(b) brightness-normalized (BN) spectra, and (c) spectral

separability index (SSI) of BN spectra
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separability index (SSI) of the brightness-normalized
spectra ( Somers & Asner, 2013). This wavelength-level
measure indicates the importance of each wavelength in
distinguishing between two classes. The SSI was calcu-
lated for each wavelength using the equation:

SSI¼
μλgreen�μλbrown

�
�
�

�
�
�

sλgreenþ sλbrown
,

where μλclass is the mean reflectance value at a given
wavelength, and sλclass is the standard deviation of the
wavelength within the given leaf or canopy class. Evalu-
ating the separability of the spectra between classes can
reveal spectral regions associated with known leaf or
structural traits that most strongly differ between the
TBB and green classes.

Foliar trait indices

Indices of 11 foliar traits known to be indicative of ROD
(Asner et al., 2018) were mapped to the 2018 filtered GAO
data. Partial least squares regression (PLSR) between air-
borne reflectance and field foliar trait samples were used to
generate the chemometric trait models for the mapped
traits (Martin et al., 2018). Chemometric models summa-
rize the information of the data and select optimal mea-
surements to provide relevant chemical information. These
models were developed and validated using airborne spec-
tral and foliar trait data from prior investigations in Sabah,
Malaysia, that span the range of trait values found in
Hawaiian forests (Martin et al., 2018). Most modeled can-
opy trait values were similar to the lab-measured values
from ʻ�ohiʻa leaves (Asner & Martin, 2016), although we
still used the mapped traits as indices (Balzotti et al., 2016;
Balzotti & Asner, 2017) to assess relative differences
between canopy status rather than precise chemical values
and the full VSWIR reflectance spectra to understand the
signals we observed. The 11 traits were selected because
they were previously found to be important for dis-
tinguishing between leaves from ROD-infected and healthy
ʻ�ohiʻa canopies (Asner et al., 2018). Moreover, they are
important for explaining the fundamental ecological pro-
cesses of forest growth and defense. Traits pertaining to
light capture and growth included LMA, nitrogen (N),
LWC, NSC, and Chl. Carbon (C), defense phenols, tannins,
lignin, and cellulose were selected because they relate to
chemical and structural defense. Canopy water content is
an indicator of the physiological status of tree and an inte-
grated measure of both LWC and leaf area index (LAI). It
is also responsive to leaf and tree canopy stress (Asner
et al., 2016; Martin et al., 2018).

The foliar trait index map for CWC, expressed as the
vertically integrated total amount of liquid water in the
canopy foliage in L m�2 (Asner et al., 2016), was modeled
from LGIS reflectance data and derived from the spectral
absorption features centered at 980 and 1160 nm (Asner
et al., 2016; Gao & Goetz, 1990). The application of the
Sabah chemometric model to Hawaiian forests resulted
in a negative shift in nitrogen values. The values of N
were scaled to give a minimum value of 0.01. Foliar nitro-
gen is being used as a relative index to understand the
underlying chemical contributions to the spectral differ-
ences in canopies stemming from ROD infection, not to
assess the absolute nutrient status of leaves, and in this
context scaling the value of N does not impact the gen-
eral analysis of traits (Balzotti et al., 2016; Balzotti &
Asner, 2017).

Canopy selection

We selected regions of high forest cover dominated by
ʻ�ohiʻa with confirmed ROD cases imaged in 2018 by the
GAO for the study (Figure 1). These regions span a range
of elevation and climatic conditions (Giambelluca
et al., 2013; Sherrod et al., 2007; Table 1). A map of
brown trees generated from 2019 GAO imagery was used
to identify canopies that were visibly green in 2018 but
became brown in 2019 (defined as TBB). We identified
green canopies in proximity to TBB canopies using color
infrared (CIR; Figure 2a) and red, green, blue colors
(RGB; Figure 2b) imagery from 2018 and 2019. Ulti-
mately, our sample size contained 660 TBB and 660 adja-
cent green ʻ�ohiʻa canopies in 11 local groupings across
Hawaiʻi Island (Figure 1). For each grouping, a subset of
green and TBB canopies were verified in the field to con-
firm that the trees were ʻ�ohiʻa. After filtering the pixels
within each canopy for brightness normalization, NDVI,
shade, and minimum height, we ended with 13,514 total
pixels, partitioned as 5530 TBB and 7984 green pixels.
The median was 9 pixels per canopy, though a few cano-
pies contained as many as 59 pixels. These large canopies
likely contained many indistinguishable crowns due to
large areas of contiguous browning in the same height
class (Appendix S1: Figure S2). In these cases, all pixels
were included. All image data were assessed in QGIS
software (QGIS Development Team, 2018).

Statistical analyses

Pixel values of foliar trait index data were averaged to the
canopy level to examine differences between TBB and
green canopies across Hawaiʻi Island. Wilcoxon-signed
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rank t tests, which are non-parametric and do not assume
normality, were used to determine whether there were
significant differences between TBB and green canopies
in terms of individual foliar trait indices across the island
and between regional groupings. To account for differ-
ences between environmental variables and foliar trait
indices, nested ANOVA tests were conducted by nesting
canopy status within region, which determined the differ-
ences between TBB and green ʻ�ohiʻa canopies within
each region. This approach allowed us to account for
environmental effects while looking for differences in
canopy status (Table 1). Pearson’s correlations were used
to examine linear relationships among foliar traits within
green and TBB canopies as they varied across the land-
scape. To understand differences in the multivariate lin-
ear partitioning of variation among chemical traits in
green and TBB canopies, we conducted a principal com-
ponents analysis (PCA) with 11 foliar traits at the canopy

level. Bartlett’s test of sphericity was performed to check
for significance. Relative contributions of principal com-
ponents were calculated to explain the linear propor-
tional importance of the foliar traits. All statistical
analyses were performed using R version 1.2.1335
(R Core Team, 2013).

Modeling

A Gradient-Boosting Machine (GBM) classification
model was used to identify the differences in non-linear
foliar trait combinations between green and TBB ʻ�ohiʻa
pixels across all the regions in the dataset. A GBM model
generates an ensemble of decision trees using an iterative
procedure where at each successive iteration, a decision
tree is fit to the remaining residuals from the previous
iteration. This process is known as “boosting” (Elith

TAB L E 1 Environmental descriptions including mean values for substrate age, mean annual precipitation (MAP), mean annual

temperature (MAT), and elevation of each regional grouping across Hawaiʻi Island

Group Description
Substrate age
(years) MAP (mm) MAT (�C) Elevation (m)

1 East of Kahua/Ponoholo Ranch, North of Puʻu O
Umi, and south of Kohala Forest Reserve

50, 190,000 103 (97–111) 16 (15–17) 1143 (1082–1190)

2 Most are in Hilo Forest Reserve with some
canopies in Hakalau Forest National Wildlife
refuge and Laup�ahoehoe Natural Area Reserve

8000, 47,500 145 (100–195) 15 (12–17) 1226 (809–1635)

3 Hakalau Forest National Wildlife Refuge 47,500 151 (91–267) 13 (11–15) 1531 (1119–1899)

4 West of Hilo Watershed Forest Reserve 47,500, 60,750 101 (98–110) 13 (13–13) 1542 (1510–1590)

5 Split between Upper Wai�akea Forest Reserve and
Puʻu Makaʻala Natural area reserve

500, 8000 233 (215–252) 15 (15–16) 1102 (1009–1135)

6 Most all in Kaʻ�u Forest Reserve. One canopy in
Kap�apala Cooperative Game Management area
and a few canopies in Kap�apala Forest
Reserve. These canopies were specifically
selected across an elevation gradient

1075 86 (77–91) 14 (11–17) 1470 (1029–1966)

7a Most in Kau Forest reserve and a few in Hawaiʻi
Volcanoes National Park Kahuku Ranch
Cooperative Nene sanctuary

1075, 20,000 92 (88–96) 13 (12–14) 1738 (1621–1825)

7b Mostly in Kaʻ�u Forest Reserve and a few just
outside in P�ahala

2250, 20,000 96 (76–110) 18 (17–20) 734 (585–894)

8 Mostly in Manuka Natural Area Reserve and a few
in Kona Hema Preserve

1075, 2250 39 (38–39) 18 (17–20) 862 (779–957)

9 Mostly west of Hakalau Forest National Wildlife
Refuge and a few canopies inside the refuge

2250 54 (46–63) 20 (19–22) 530 (381–658)

10 South of Wai‘aha Springs Forest Reserve in
Honuaʻula

700, 8000 48 (46–52) 21 (18–23) 633 (480–729)

11 Split between Honuaʻula Reserve Forest and in
Kalaoa

2250, 4000 48 (38–59) 18 (15–22) 984 (759–1392)

Note: The range of values is given in parentheses.
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et al., 2008; Friedman, 2001). Such models incorporate
both bias and variance reductions, distinguishing them
from other decision-tree based approaches such as Ran-
dom Forest (RF), which are focused on variance reduc-
tion (Breiman, 2001; Pavlov, 2019). The GBM model was
employed in order to incorporate non-linear interactions
between features while being robust to multicollinearity
(Friedman, 2001; Mason et al., 1999).

Although the number of canopies for both classes was
identical, the number of valid pixels for green canopies
was higher than those of TBB canopies. To create a bal-
anced dataset of TBB and green pixels for the model, we
randomly drew 5530 green pixels without replacement
from the 7984 available. To avoid under-representing
smaller canopies, we first selected 1 pixel from each of
the 660 canopies and then filled the remaining samples
from all unselected pixels without regard to canopy mem-
bership. The model was run at the pixel level to properly
capture variation among pixels within individual TBB
and green ʻ�ohiʻa canopies. The final model of 11 foliar
chemical trait indices included n = 5530 green and
n = 5530 TBB pixels distributed across Hawaiʻi Island,
and represented n = 660 green and n = 660 TBB cano-
pies. Optimal model hyper-parameters were identified
using a grid search technique, checking every unique set
of hyper-parameters in a 144-stage grid built from candi-
date values of the number of estimators, maximum
depth, and learning rate of the classifier (Vaughn
et al., 2018). Ten-fold cross-validation was performed on
each set of parameters with a 90/10 train test split in each
fold to get the true positive, true negative, false positive,
and false negative counts for each of the 144 models. All
model training was done using the package Scikit-Learn
for Python (Varoquaux et al., 2015). The final set of
parameters was selected that maximized the overall recall
of predictions made in the 10-fold cross-validation proce-
dure. Recall, which balances accuracy and precision is
given by the equation below:

recall¼ true positives
true positivesþ false negatives

:

While the subsequent classified data were binary, GBM
models output prediction probabilities, and a threshold
value, T, should be specified to assign a true or false value
to each prediction. The default value is 0.5. To view how
the classification results change as we adjusted T, we com-
puted a receiver operating characteristic (ROC) curve. This
curve plotted the optimal model’s true positive rate against
the false-positive rate over 1000 unique values of T to illus-
trate the diagnostic ability of a binary classifier. As the
threshold values increase, both true positives and false posi-
tives increase. Therefore, analysis of the ROC curve

provides a measure of model performance across a range of
possible threshold values (Fawcett, 2006).

We calculated permutation importance and partial
dependence plots (PDPs) from the gradient-boosting
models to understand the relationship between foliar
traits and the predicted browning probability. Permuta-
tion importance describes a decrease in the score when
the values of a feature are randomly permuted prior to
model application. Partial dependence plots demonstrate
the marginal change in our model’s predicted probability
of TBB as we increase the value of a single feature
between its 5th and 95th percentile, all others being set
to their respective means (Friedman, 2001).

RESULTS

There were quantifiable differences between TBB in 2019
and green ʻ�ohiʻa canopies on Hawaiʻi Island (Table 2).
Across the regional groupings with differing environmen-
tal conditions, the variance was observed among reflec-
tance spectra and foliar trait values (Appendix S1:
Table S6). Even with this variation, two gradient-boosting
machine models predicted classes with moderately high
accuracy across a large environmental gradient (Table 3).

Early signs of Rapid ʻ�Ohiʻa Death in
canopies

In the true-color imagery of 2018, TBB and green ʻ�ohiʻa
canopies appeared identical based on visual assessment
(Figure 2a,b). But spectrally, TBB canopies in Hawaiian
forests exhibited remotely sensed foliar chemical and
reflectance differences that were distinct from their green
counterparts (Figure 2c,d, and 3).

Green and TBB ʻ�ohiʻa canopy reflectance spectra
(Figure 3a,b) overall had similar shapes, though their
slight differences in scattering and reflectance features
(Figure 3c) match our hypotheses based on differences
between green and brown ʻ�ohiʻa spectra (Asner
et al., 2018). Brightness normalization reduced the overall
variability of green and TBB canopy spectra and
increased the reflectance values in the near-infrared rela-
tive to the remainder of the spectrum (Figure 3b). The
green-leaf values followed the classic pattern with a local
spectral reflectance peak at 550 nm, strong absorption
near 680 nm, increased brightness in the near-infrared
(700–1300 nm), and strong absorption in the shortwave-
infrared (1300–2500 nm). The highest spectral separabil-
ity between the canopy states was located in the
shortwave-infrared (>1300 nm) wavelength range, which
is associated with differences in cellulose and NSC, as
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well as water concentrations between green and TBB
canopy states (Figure 3b,c). In the visible wavelengths,
there is spectral separability in the 680–780 nm wave-
length range, which is associated with differences in phe-
nols and Chl (Figure 3c). Moreover, we see separability
around 940 nm, associated with water features. Maxi-
mum spectral separability at the canopy level was
achieved using brightness-normalized reflectance spectra
from the airborne imaging spectrometer data (Figure 3c).

Mapped canopy foliar indices varied across the island
(Table 2; Appendix S1: Figure S3, Table S5) and within
regional groupings (Table 1; Appendix S1: Table S6).
Compared to single traits, average canopy indices for
LMA, Chl, LWC, and CWC were higher in green cano-
pies, whereas phenols and cellulose were higher in TBB
canopies (Table 2). Differences between canopy status
within regional groupings (e.g., regions 9–11) were not
always apparent (Appendix S1: Table S6), probably due

to the more rapid nature of disease takeover in certain
areas. When chemical separations were observed, the dif-
ferences between TBB and green canopies were clearly
depicted in the remotely sensed maps of foliar traits, such
as with higher CWC in green canopies and higher cellu-
lose in TBB canopies (Figure 2c,d). Total percentages of
N and C and concentrations of tannins and lignins of
canopies did not differ between green and TBB canopies
(Table 2). At the pixel level, all traits except cellulose and
lignin differed between the TBB and green ʻ�ohiʻa
(Appendix S1: Table S1, Figure S4).

Principal component (PC) analysis revealed linear
combinations of foliar traits produced multiple axes of
variation in green and TBB canopies (Figure 4;
Appendix S1: Table S2). Nearly 50% of the variation was
found in the first two PCs (Figure 4), but seven PCs were
needed to account for 95% of the variation. The first two
principal components (PC1 and PC2) explained 27% and

TAB L E 2 Means and standard deviations (in parentheses) of foliar traits for green (n = 660) and “to become brown” (TBB; n = 660)

ʻ�ohiʻa canopies

Trait

Green ʻ�ohiʻa (n = 660) TBB ʻ�ohiʻa (n = 660)

Mean Range Mean Range

Light capture and growth

CWC (L m�2)** 2.57 (0.39) 1.34–4.06 2.40 (0.38) 1.20–3.61

LWC (%)** 53.8 (3.7) 41.1–61.2 53.1 (4.5) 38.4–60.9

LMA (g m�2)** 198.4 (25.5) 125.2–284.7 193.5 (23.6) 121.6–268.9

Nitrogen (%) 1.02 (0.27) 0.28–2.34 1.00 (0.27) 0.17–1.8

Chlorophyll (mg g�1)** 4.23 (0.84) 1.91–6.89 4.05 (0.95) 1.48–6.88

NSC (%)* 53.9 (5.0) 33.8–66.5 54.5 (5.0) 35.4–67.4

Structure and defense

Phenols (mg g�1)** 122.2 (17.3) 62.7–163.7 127.6 (15.8) 79.9–200.6

Tannins (mg g�1) 98.2 (10.9) 65.1–122.3 98.2 (12.3) 57.2–141.8

Carbon (%) 51.4 (1.2) 46.0–55.0 51.4 (1.3) 47.5–54.9

Cellulose (%)* 13.8 (2.2) 7.5–20.7 14.1 (2.6) 5.2–22.0

Lignin (%) 21.1 (4.7) 7.6–37.9 20.9 (5.2) 5.9–41.2

Note: For each trait, an asterisk (*) indicates significant differences between group means (Wilcoxon t tests, *p < 0.05, **p < 0.0001).

Abbreviations: CWC, canopy water content; LMA, leaf mass per area; LWC, leaf water content; NSC, non-structural carbohydrates.

TAB L E 3 Confusion matrix results from the cross-validation procedure of the optimal fit of the two gradient-boosting machine (GBM)

models at a default classification of 0.5. A GBM included the spectral data (400–2500 nm) another contained the 11 foliar trait indices from a

balanced dataset of green and “to become brown” (TBB) ʻ�ohiʻa pixels (n = 11,060) distributed across Hawaiʻi Island

Predicted

TBB Recall Precision Cohen’s KappaObserved Green

Spectral data Green 4120 1410 0.75 0.75 0.493

Brown 1393 4137

Foliar traits Green 3998 1532 0.72 0.72 0.441

Brown 1512 4018
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23% of the variation in green and 32% and 24% in TBB
ʻ�ohiʻa canopies, respectively (Figure 4; Appendix S1:
Table S2). Variation in the first axis for green canopies
was largely explained by N and LMA, which were also
negatively correlated (r = �0.79 and �0.81 in green and
TBB canopies, respectively; Appendix S1: Figure S5,
Table S4), while variation in the second axis was domi-
nated by NSC and lignin. Both NSC and lignin were also
negatively correlated within green (r = �0.76) and TBB
canopies (r = �0.70; Appendix S1: Table S4). Variation
in the first axis in TBB canopies was dominated by LWC
and to a lesser extent, cellulose, while the variation in
PC2 was more evenly distributed among LMA, nitrogen,
and lignin (Figure 4; Appendix S1: Table S3). Noticeable
differences between TBB and green canopies were found
on axis three (PC3; Appendix S1: Table S3). Tannins, Chl,
and CWC values of green canopies explained variation of
the PC3, while tannins and less so Chl explained varia-
tion in TBB canopies.

Modeling an early-stage disease signal

The GBM model with full VSWIR reflectance spectrum
accurately classified 75% of TBB and green training

pixels. The GBM with 11 foliar traitindices accurately
classified 72% of TBB and green training pixels. Optimal
parameter values for the full VSWIR spectrum exhibited
a learning rate of 0.05, a maximum tree depth of seven,
and an assembly of 5000 decision trees. Optimal parame-
ter values for the foliar trait index GBM exhibited a learn-
ing rate of 0.02, a maximum tree depth of eight, and an
assembly of 2500 decision trees. Both GBMs were conser-
vative during training, with many more false-negatives
than false-positives occurring in the TBB class. For the
full reflectance model, recall, precision, and f1 values
were each 75% and the Cohen’s Kappa value was 0.493.
For the model with 11 foliar trait indices, recall, preci-
sion, and f1 values were each 72% and the Cohen’s
Kappa value was 0.441 (Table 3). For the full VSWIR
model, as we varied the probability threshold for binary
classification 0–1, the true positive rate of the model
increased sharply from zero to approximately 40% before
gradually increasing to approximately 92% as the false
positive rate reached 50% (Appendix S1: Figure S6a). For
the trait model, as we varied the probability threshold for
binary classification 0–1, the true positive rate of the
model increased sharply from zero to approximately 35%
before gradually increasing to approximately 90% as
the false positive rate reached 50% (Appendix S1:

F I GURE 4 Principal component analysis (PCA) of the 11 foliar trait indices for “to become brown” (TBB; n = 660) and green (n = 660)

ʻ�ohiʻa canopies distributed across Hawaiʻi Island. Foliar traits are colored by overall percent contribution. Canopy water content (CWC,

L m�2), leaf water content (LWC, %), leaf mass per area (LMA, g m�2), nitrogen (%), chlorophyll (Chl, mg g�1), non-structural

carbohydrates (NSC, %), phenols (Phe, mg g�1), tannins (mg g�1), carbon (%), cellulose (%), lignin (%)
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Figure S6b). As shown by an area under the curve (AUC)
of 0.83 (full VSWIR GBM) and 0.81 (foliar traits GBM),
the models were superior to chance at detecting differ-
ences between classes (Appendix S1: Figure S6). Ambigu-
ous pixels were more likely to be misclassified as green
than TBB (Table 3).

Permutation feature importance results from the non-
linear, multivariate GBM showed tannins to be most
important in predicting canopy status, followed closely

by CWC (Figure 5). Although tannins were not signifi-
cantly different between conditions of canopies when
tested individually, these results indicate the importance
of their variation in combination with other traits. While
tannins and CWC exerted the largest effect for model dif-
ferentiation of green and TBB pixels relative to other
traits, all traits had high confidence in the median of per-
mutation feature importance with small deviations indi-
cating they all collectively contributed to the separation

F I GURE 5 Permutation (variable) importance (top left) for the 11 foliar trait indices from a balanced dataset of green and “to become

brown” (TBB) ʻ�ohiʻa pixels (n = 11,060) distributed across Hawaiʻi Island. The median and 95% confidence intervals are displayed.

Permutation importance was computed by measuring the reduction in accuracy of the trained gradient-boosting machine (GBM) model after

permuting each feature randomly 10 times with the entire dataset. The remaining plots are partial dependence plots (PDPs) of browning

probability displaying 100 random samples from the balanced dataset for the 11 foliar traits indices. Probabilities were also calculated from

10-fold cross-validation in the GBM. The rug plots display the 100 random samples. Canopy water content (CWC, L m�2), leaf water content

(LWC, %), leaf mass per area (LMA, g m�2), nitrogen (%), chlorophyll (Chl, mg g�1), non-structural carbohydrates (NSC, %), phenols

(mg g�1), tannins (mg g�1), carbon (%), cellulose (%), lignin (%)
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of canopy conditions. The PDPs derived from the GBM
were used to explore how different foliar trait indices
influence the probability of a canopy being TBB
(Figure 5). These depict the functional relationship
between input variables and predictions. Partial depen-
dence plots did not highlight specific non-linear interac-
tions between the prediction variables, but rather
displayed average response of probability of being a TBB
canopy across all predictor variables as a function of the
variable being examined. Nitrogen, CWC, LMA, and tan-
nins expressed strong negative linear trends with TBB
probability. Conversely, phenols, lignin, cellulose, and
NSC demonstrated a positive relationship with TBB prob-
ability, though the expressed relationship for cellulose
and NSC were more curvilinear. Both Chl and LWC
exhibited a concave parabolic relationship with TBB
probability, though the actual change in TBB value across
the range of these traits was minimal. Carbon did not
show a discernable pattern in the PDPs (Figure 5).

DISCUSSION

The canopy reflectance spectra and foliar trait indices
mapped from GAO LGIS revealed quantitative differ-
ences between TBB and green ʻ�ohiʻa canopies, despite
the lack of visible brown symptoms when first measured
in 2018. While the green and TBB canopies were visually
inseparable in the 2018 imagery, we found a characteris-
tic difference in leaf traits that affected the reflection of
electromagnetic radiation in a way only observable with
imaging spectroscopy (Asner, 1998). Reflectance spectra
displayed distinct separability across nearly all wave-
lengths with the greatest differences found in the NIR
and SWIR regions (Figure 3c) indicative of subtle differ-
ences in water content, nitrogen, and relative distribution
of carbon compounds associated with a structure (lignin
and cellulose) and defense (phenols and tannins). The
strength of this browning signal was evidenced by consis-
tency in the chemical separability of green and TBB
ʻ�ohiʻa trees both at pixel and canopy levels, further dem-
onstrating the potential utility in using hyperspectral
imagery for spatially explicit vegetative pathogenesis
forecasting.

Principal components analysis revealed subtle varia-
tions in the combination of foliar traits that distinguished
green canopies from TBB canopies, pointing toward pos-
sible physiological responses. The two axes of variation in
PCA addressed strategies for growth and carbon use
within ʻ�ohiʻa canopies. In PCA’s of both green canopies
and TBB canopies, linear combinations of LWC and cel-
lulose were arranged between the first two components
in an orthogonal manner relative to NSC, LMA, lignin,

and nitrogen. This pattern indicated independent func-
tion. Changes in LWC and NSC values are indicative of
shorter-term stress, while changes in cellulose, lignin,
and LMA values are indicative of longer-term carbon
investments (Klein et al., 2014). However, differences
between TBB and green canopies were demonstrated
through traits such as tannins, which split importance
with Chl in green canopies, but dominate PC3 in TBB
canopies (Appendix S1: Table S3). These differences in
proportioning of foliar chemical trait indices between
TBB and green canopies are consistent with stress
response in trees (Klein et al., 2014). In response to
Ceratocystis infection, ʻ�ohiʻa canopies may be producing
tyloses, gels, and gums to limit spore movement, which
could alter concentrations of foliar traits including tan-
nins and lignins (Yadeta & Thomma, 2013). Additionally,
CWC and lignin, both important for describing the chem-
ical signature of green canopies, are of limited impor-
tance in the chemical signature of TBB canopies. Such
changes to canopy chemistry were consistent with foliar
responses to drought following cavitation of xylem and
could be responsible for causing differences in distribu-
tions of foliar traits (McDowell et al., 2008).

By utilizing foliar chemicals detected by high-fidelity
measurements of the full electromagnetic spectrum, we
demonstrated the first results to detect and model a sig-
nal of infection prior to visible browning. Prior to this
study, Perroy et al. (2020) used a spectroradiometer to
measure four vegetation indices in the visible and near-
infrared (VNIR) spectrum including cellulose absorption
index (CAI), moisture stress index (MSI), photochemical
reflective index (PRI), and NDVI. While CAI and MSI
showed promise, the VNIR portion of the spectrum was
deemed insufficient for the early detection of ROD infec-
tion. Several foliar trait indices estimated from our spec-
trometer incorporate information from the shortwave
region of the VSWIR spectrum (Martin et al., 2018). This
added information is essential for predicting this early
detection signal because when restricted to the VNIR
range, the ability to predict canopy chemical traits is
greatly reduced (Asner et al., 2011). Thus, our modeling
analyses revealed important spectral signals that would
otherwise go undetected.

Spectral and underpinning chemical differences
between TBB and green canopies were detected by the
GBM across a very broad environmental gradient (381–
1966 m) within a single species. This result is important,
because, while there is only one species of ʻ�ohiʻa on
Hawaiʻi Island, canopies express great morphological
variation due to environmental factors such as
precipitation levels (Cordell et al., 1998; Kitayama
et al., 1997; Stemmermann, 1983), temperature (Drake,
1993; Sakishima, 2015), light availability (Burton &
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Mueller-Dombois, 1984; Cordell et al., 1998; Morrison &
Stacy, 2014), and soil age (Cordell et al., 2001b;
Treseder & Vitousek, 2001).

Prior studies have combined hyperspectral data col-
lected by spectroradiometers with modeling approaches
for the early detection of forest fungal pathogens.
Abdulridha et al. (2016) used neural networks to detect
laurel wilt from a lab spectroradiometer (400–950 nm),
though they were most successful when leaves displayed
visible symptoms. Heim et al. (2019) employed random
forest modeling with data collected by a field spect-
roradiometer (350–2500 nm) to detect myrtle rust.
Fallon et al. (2020) also used a field spectroradiometer
(400–2400 nm) and employed partial least squares dis-
criminant analyses to detect oak wilt. Such studies dem-
onstrate that multivariate modeling can reveal variance
in data and identify spectral signatures associated with
healthy and diseased states of canopies, and that early
detection is most successful when the full spectrum is uti-
lized. Our results documented commonalities in spectral
reflectance and foliar chemical changes expressed in TBB
ʻ�ohiʻa canopies across diverse environmental gradients
and ʻ�ohiʻa leaf morphology. Our findings suggest that a
spectral-chemical signature of TBB trees can be mapped
across Hawaiʻi Island, and they advance the idea that
spectral-chemical signatures for operational mapping
with imaging spectroscopy can be implemented.

As we intended to detect differences in canopy signal
between ROD impacted and healthy ʻ�ohiʻa, we selected
canopies in locations of confirmed ROD outbreaks.
Although we call canopies TBB rather than “future ROD
canopies,” we are reasonably confident that canopy
browning was caused by ROD (i.e., infected by the fungal
pathogen, Ceratocystis). Rapid ʻ�ohiʻa death commonly
undergoes rapid symptom progression whereby tree can-
opies change from green to brown in weeks to months
(Barnes et al., 2018; Mortenson et al., 2016). This often
rapid and extensive brown-leaf state generated by ROD is
unique in ʻ�ohiʻa and distinct from other ʻ�ohiʻa death or
dieback events (Jacobi, 1983; McDowell et al., 2008;
Mueller-Dombois, 1980; Mueller-Dombois et al., 2013).
Therefore, by detecting a difference in spectral and chem-
ical signals between green and TBB canopies in areas of
known ROD infection, we suggest that trees are either
stressed prior to showing visible symptoms and
succumbing to the disease or that certain crowns and
stands are more susceptible to ROD than others. While
the abrupt onset of visible symptoms is the result of trees
reaching a “tipping point,” where the xylem is blocked,
water and nutrient flow stops, and wilt and browning
occur (Barnes et al., 2018; Hughes et al., 2020; Mortenson
et al., 2016), it is possible the tree had been infected with
the Ceratocystis disease for an extended period. Although

we cannot yet confirm that our results provide a defini-
tive signal for ROD-induced browning, this study shows
that early detection of canopy browning, presumably
from ROD is possible. In this study, our approach to use
LGIS allows us to detect differences before symptoms are
visible to the human eyes; thus, putting management a
step ahead of the disease.

The mortality of �ohiʻa from ROD has spread well
beyond initial areas of infection of the Puna District of
Hawaiʻi Island documented by Mortenson et al. (2016). It
now occurs on each of the five main volcanoes of Hawaiʻi
Island (Camp et al., 2019; Vaughn et al., 2018). Increasing
our ability to promptly detect and understand the move-
ment of the disease is essential. Early detection of ROD
will allow us to determine the most vulnerable regions to
browning and properly inform management regarding the
allocation of resources to reduce damage and prevent
spread (Loope et al., 2016). In this study, we demonstrated
the ability to use canopy chemistry to develop a prognostic
indicator of tree stress prior to the visible onset of brow-
ning. Ultimately, we show a technique for landscape-scale
imaging spectroscopy modeling and propose future map-
ping to be possible and applied to other pathogens. These
results are extremely promising for aiding in the conserva-
tion efforts of reducing the impact of ROD.
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