AgPro Research and Extension Update 2014

Dr. Andy Kaufman

Tropical Landscape & Human Interaction Lab

Tropical Plant & Soil Sciences

CTAHR

University of Hawaii

Lab Overview

The Tropical Landscape and Human Interaction Lab

Is a multidisciplinary research laboratory dedicated to studying the connection between plants, the outdoor landscape and the associated human responses...

Project Examples

Reducing Infrastructure Damage by Trees

Funded by: Hawaii Department of Transportation, (HDOT)

Kalani Matumura & Leinala'a Bright: Graduate Students

You may seen these before....?

The Majority of research on urban trees is done in temperate climates. Information is lacking for tropical/sub-tropical environments such as Hawaii!

Honolulu Street Trees

- Currently:
 - 235,000 trees managed by C&C¹
 - 142,000 street trees (60%) on C&C roads
- **45%** of the C&C Urban Forestry budget is spent for infrastructure damage to sidewalks, gutters, roads and sewer pipes due to damage by tree roots.
- **28% budget on tree pruning**
- **27%** budget on tree planting, removal, inspection and administrative costs

Objectives of this Project

- Determine regrowth rates after pruning for several species over a 2 year period.
- **Select proper planting area for improved tree health.**
- Gain an understanding of growth rates for different tree species.
- Develop recommendations on species selection, tree planting guidelines, and maintenance.
- **Reduced tree infrastructure costs.**

Waimanalo Field Planting Diagram

Green and Healthy Hawai'i: Identifying & Introducing Alternative Ornamental Landscape Plants in Response to Invasive Species Issues

Funded by: Hawaii Invasive Species Council, (HISC)

Alberto Ricordi: Graduate Student

Objectives of this Project

Promote non-invasive species for the Landscape Industry to create a more sustainable island landscape.

Strawberry guava (Psidium cattleyanum), a common invasive species in Hawai'i

Material and Methods

Pimenta dioica

Allspice

Medium size accent tree.

Harpulia pendula
Tulipwood

Caesalpinia ferrea
Brazilian ironwood
Leopard tree

Psydrax odorata Alahe'e

Field-trials with Available Alternatives

- 3 Locations
 - Waimanalo (Oahu)
 - Poamoho (Oahu)
 - Waiakea (Big Island)
- Two fertilizing treatments
 - Slow release fertilizer
 - No fertilizer at all

- 19 Species 10 Native + 9 Exotics
 - Total 480 plants

Waimanalo Research Station

Weeding

Weed matts to suppress weeds

Results (Mortality rates)

Results - Field Day

Participants

- Landscape Architects, Arborists, Landscape contractors, and Nurserymen attended.
- Issues for using non-invasive plants in the L.S.
 - Availability was voted the main issue.
 - Confirmed difficulties found when looking for plants for this project.
 - More studies were requested.

Deflecting the Wave: Using Coastal Vegetation to Mitigate Tsunami and Storm Surge Phase III

Funded by: Kaulunani Urban & Community Forestry Program

Alberto Ricordi & Timothy Gallaher: Graduate Students

Overview

December 2004Indonesia/ Indian Ocean tsunami

•Death toll: > 200,000

Cost: >14 Billion

- **⋄** March 2011 Japan/Pacific Ocean tsunami
 - Death toll: > 16,000
 - Cost: > 300 Billion
- Interest in bio-shields following 2004 tsunami
- Anecdotal accounts
- Research conflicting
- Most research to date based on one large event

Tsunami in Hawaii

*** 1946, 1952, 1957, 1960, 1964, 1975, 2011**

Previous research suggests that a coastal forest with high stem density & complex vertical structure will provide the greatest protection from storm surge and tsunami events.

Without Bioshield

With Bioshield

Samoa Observations

Coastal Restoration + Bio-Shield Design

- A successful coastal restoration project in Tonga recommended a three step plan:
- 1. Plant a dense buffer of highly salt tolerant species,
- 2. Behind this plant less tolerant species,
- 3. Finally add biodiversity to the new coastal forest with enrichment plantings of key species.

Current Steps

Bio-shield design for natural and non-urban areas

Background zone planting

Foreground zone planting

People's Psychophysiological Responses to Tropical Urban Tree Pruning in Hawai'i

Funded by: Kaulunani Urban & Community Forestry Program

Post-Doc: Sangmi Lee, Dankook University, Korea Srudents: Aarthi Padmanabhan & Aliah Irvine, University of Hawaii

THE PROBLEM

- Often, trees are taken for granted, and their attributes are not fully realized...
- Lack of budget, education of plant/tree care in the LS...
- Large heading cuts: unsightly and can severely shorten the life of the tree.
- In Hawai'i, people seem to have an affinity against trees instead of embracing trees attributes.

OBJECTIVES OF STUDY

- DETERMINE residents of Hawai'i social and physiological responses to tropical trees in Hawai'i.
- CHARACTERIZE differences in people's social and physiological response to proper and improper tree care practices in Hawai'i.
- PREVENT destructive tree care practices in the State of Hawai'i.
- PROVIDE environmental education to tree care professionals, policy makers and the general public.

METHODS and MATERIALS

***Electrode Placement & Recording**

Set up and calibrating psychophysiology instruments.

***Good Form.**

*Bad Form.

Visual Stimulus

Examples

Good Close-up.

Bad Close-up.

PRELIMINARY RESULTS

- Activation for Good Form indicates a positive arousal state.
- Based on LS sustainability theories, seeing a healthy tree
 would indicate short term or long term resources.

PRELIMINARY RESULTS

- In terms of information processing, psychophysiological data reveals for bad form tree images there is information rejection. (People do no want to process that image).
- SCR and EMG-Z & O psychophysiological data indicates looking at good form full trees is a rewarding experience.
- Data also reveals that respondents do not like bad form tree images.

Mahalo for your time...

Dr. Andy Kaufman Tropical Landscape & Human Interaction Lab Tropical Plant & Soil Sciences CTAHR University of Hawaii

