AQUAPONICS BUN LONG TARO CULTIVATION

Windward Community College Aquaponic Research Lab October 2011 – May 2012

TEAM MAHALO

- Clyde Tamaru, CTAHR
- Kai Fox, CTAHR
- RuthEllen Klinger-Bowen, CTAHR
- Kathy McGovern Hopkins, CTAHR
- Vanessa Lum, Americorp Intern/WCC
- WCC Aquaponics 193v Class
- Adam Park, CTAHR
- Ted Radovich & Jari Sugano, CTAHR

Data Collection

Grow media:

Black Cinder, Red Cinder, Clay Balls (Hydroton)

pH Remediation:

Plant Growth/Media comparisons

Commercial Outcomes:

Commercial Farmer Consumer Application

Taro, Colocasia esculenta

Family: Araceae

Genus: Colocasia

Species: Esculenta

Taro variety known locally as Bun Long, or Chinese Taro.

Used for both leaf and corm, in dishes like squid luau, laulau, palasami, lupulu.

IRETA Pub No 14/87 pg.4

Trial 1 Approach

Grow Media comparison

- Water Quality monitoring (weekly) DO, TDS, Temp. Ammonia, Nitrite, Nitrate
- pH remediation (weekly) alternating KOH, Ca(OH)₂
- Leaf Harvest frequency once every 10 days
- Media Leaching Analysis

Leaf Quality/Farm Yield/Commercial

- Leaf Harvest
- Taste/comparison trials utilizing traditional luau leaf recipes
- Corm harvest Taro Chip taste/comparison trials
- Keiki (sucker shoot) production.

Number of Adult Plants Harvested per Treatment

Total Weight of Adult Plants per Treatment

Mean Corm Weight Per Treatment

Number of Keiki per Makua Plant

Number of Keiki per Makua Plant

Mean Weight of Keiki Corm per Treatment

Total Keiki Corm Weight

Total Weight of Keiki Plants per Treatment

Summary

- Data Collection Analysis (on-going)
- Commercial Farmer/Consumer Considerations
- Trial 2 investigation of disease pathogen possible
 Phytophthora & Pythium outbreak
- One media possible use of calcium carbonate for pH remediation.

Nutrient Profiles of Fish Food, Effluent and Static Hydroponic Recipes

WCC Testing Unit

WCC Static Hydroponic Control

Macro and Micro Nutrients	Fish Food (ppm)	WCC Aquaponic System (ppm)	**Static Hydroponic (ppm)
Nitrogen	686,000,000	38.42	158.00
Phosphorus	124,000,000	2.34	40.00
Potassium	75,000,000	9.26	200.00
Calcium	195,000,000	17.88	200.00
Magnesium	18,000,000	8.97	50.00
Iron (Fe)	282	0.04	3.38
Manganese	38	0.12	0.70
Zinc	124	0.08	0.22
Copper	11	0.03	0.40
Boron	9	0.04	0.62

^{**}Hydroponic recipes from: Jones, Resh, Steiner, Wilcox and Snyder

Aknowledgements

- This project was was partially supported by USDA National Institute of Food and Agriculture, Smith-Lever funds for Cooperative Extension Project ID 12-506, Strengthen aquaculture research and extension at CTAHR.
- Partial funding for HATCH project (HAW00533-H) Development of sustainable food waste vermicompost-integrated aquaponic farming systems for cultivation of taro (*Colocasia esculenta*).