Impacts of Various Commercial Feeds on Growth and Survival of Red Pacu, *Piaractus brachypomus*

Project Details

Contract # 2008-201

Duration: 2 years

Funding: \$50,000/year

Support: CTSA, Maui County, UH Sea

Grant, CTAHR, USDA, NOAA

This project was partially supported by USDA National Institute of Food and Agriculture, Smith-Lever funds for Cooperative Extension Project ID 12-506, Strengthen aquaculture research and extension at CTAHR.

Why pacu?

- Rapid growth
- Amenable to high densities
- Hardy to marginal water quality
- Ability to utilize high carbohydrate/low protein diets
- Potential polyculture (tilapia, carp, crustaceans)
- High marketability as a food fish and ornamental fish

Objective: Characterize growth and survival of juvenile red pacu in closed recirculating systems.

- Windward Community
 College facility on January
 30, 2012
- Four Fish distributed into each of twelve 64 gallon tanks
- Four replicates of three commercial diets: chicken feed (egg-layer), catfish feed and trout feed.
- Aquaponic set up with culantro

Objective: Characterize growth and survival of juvenile red pacu in closed recirculating systems

- Body weight and length of pacu (n=4/tank) are obtained at bimonthly intervals
- Feed input monitored for each tank.
- Temperature, pH, DO, Conductivity, TAN, and Nitrate monitored weekly.

Pacu Growth (BW) versus Feeds

Pacu Growth (TL) versus Feeds

Pacu Survival

Feed Treatments

Temporal Changes in Total Nitrates

Dates Sampled

Temporal Changes in pH 9.00 8.50 8.00 7.50 7.00 6.50 6.00 5.50 5.00 = Chicken (16.1%) 4.50 = Catfish (36.7%) 4.00 = Trout (46.8%) 3.50 3.00 30-Apr 30-Jun 31-May 29-Feb 31-Mar 31-J1 31-Jan **Dates Sampled**

Composition of various commercially available feeds

Category	Chicken	Catfish	Trout
Protein%	16.13	36.72	46.77
Fat%	2.98	4.67	8.54
P %	0.69	1.32	1.64
K %	1.03	1.42	0.90
Ca %	4.25	1.47	3.05
Mg %	0.25	0.31	.021
Na %	0.28	0.22	.031
Bo ppm	12	20	13
Cu ppm	24	12	12
Fe ppm	195	276	288
Mn ppm	120	132	45
Zn ppm	81	145	213

Chemistry of the Nitrification Process

Photo credit: Stan
Watson, Woods Hole
Oceanographic Institute.
2010

Nitrosomonas

 $55 \text{ NH}_4 + + 5 \text{ CO}_2 + 76 \text{ O}_2 \rightarrow \text{C}_5 \text{H}_7 \text{NO}_2 + 54 \text{ NO}_2 - + 52 \text{ H}_2 \text{O} + 109 \text{ H}_+$

Nitrobacter

Photo credit: W.J. Hickey, University of Wisconsin-Madison, 2006

$$400 \text{ NO}_2$$
- + 5 CO₂ + NH₄+ + 195 O₂ + 2 H₂O \rightarrow C₅H₇NO₂ + 400 NO₃ - + H+

From: Haug and McCarty, 1972

Average Leaf Area

Culantro - Eryngium foetidum

Feed Treatments

Average Leaf Weight

Culantro - Eryngium foetidum

Feed Treatments

Chlorophly Content

Culantro - Eryngium foetidum

Feed Treatments

Feed Costs

- Silver Cup Trout \$0.82/lb
- Chicken (egg layer) \$0.46/lb
- Rangen Catfish \$0.65

Pacu Growth (BW) versus Feeds

Summary

- Pacu fed trout feed grew significantly greater than other treatments. (p<0.05)
- Culantro in aquaponics systems fed trout feed grew best
- Trout feed cost/lb highest
- Chicken Feed produced poorest quality culantro
- Survival lowest with catfish feed
- Result of lower pH (from higher protein diet) did not affect fish survival or growth

Condition Factor

Mean Pacu CFI (6 months)

