Innovative use of local materials for vegetable production in Hawai'i

HOFA Annual Conference Hilo, Hawai'l 21 October, 2011

Ted Radovich, N.V. Hue, Archana Pant, Jari Sugano, Ian Gurr, Brent Sipes, Clyde Tamaru, Kai Fox, Kent Kobayashi, Robert Paull

Isolation

Costs

Today

Composts

- aqueous extracts
- media components

Tankage

Invasive algae

Compost

Commercial greenwaste

Handcrafted Artisan

Vermicompost

Seedlings in 100% compost

Compost "Tea"

Uses air and water to extract:

Nutrients

Organic acids

Microbes

 Ratio of water to compost ranges
 10:1-100:1

Water is not circulated, only air

• 12-24 hrs

Compost Tea

Pant et al. 2009. J.Sci.Food Agric.

Oxisol

Mollisol

- Positively impacts growth.
- Glucosinolate and carotenoid follow biomass.
- Effect is consistant across soil and media.
- Response dependent on rate and quality of compost.
- Aeration and additives not necessary.

Peat

Pant et al. 2011. Compost Science and Utilization.

Compost Tea

Root growth also increased.

Growth response associated with improved nutrient status.

Soil and media biological activity increased with tea applications.

Back to the field

Guiding new adoptors

http://www.ctahr.hawaii.edu/RadovichT/lab-local_resources.html#compost

Summary

Compost tea improves plant nutrient status:

- 1. Mineral nutrients
- 2.Stimulated root growth.
- 3.Improved soil biological activity

Recommendations to Growers:

- 1. Compost quality matters.
- 2. More mature better. >300 ppm nitrate.
- 3. >1% compost.
- 4. Aeration recommended, not additives.
- 5. Inject into drip.

Compost in Seedling Media

Seedling Production

Aquaponics

Aquaponics

Tankage

Local rendered meat product. N = 7.5- 9.5%, $P = \sim 2.5\%$. C:N = 5:1

Tankage

Invasive Algae

LIMU COMPOSTING IN KAMILONUI WHICH TREATMENT WILL DECOMPOSE THE FASTEST?

CONTROL

100% ALGAEONLY (AVRAINVILLEA)

TREATMENT 1
BASE MIX ONLY

TREATMENT 2
BASE MIX + 4
BAGS CHICKEN

MANURE

Treatment 2

TREATMENT 3
BASE MIX + 4 BAGS
CHICKEN MANURE + 3/4
bottle of EM BOKASHI

TREATMENT 6 (Niu)

To be determined...

TREATMENT 4
BASE MIX + 4 BAGS
CHICKEN MANURE + 3/4
bottle of EM BOKASHI

ASSUMPTIONS:

BASE MIX = EQUAL PARTS OF:

AVRAINVILLEA, HORSE MANURE, SHREDDED GREENWASTE

% truck load = 4,000 lbs @ 30:1 C:N ,we will need 40 lbs of chicken manure based on dry wt.

sive Algae

Hanai'Ai (Vol. 5)

Table 1. Nutrient analysis from Maunalua Bay limu species. Values are means of at 4-10 analyses ± standard error of the mean. Note the significant variability in potassium (K) among species.

Species	%						
	N	С	Р	K	Ca	Mg	Na
Aravinvillea amadelphia	0.9 ± 0.1	16.7 ± 0.9	0.06 ± 0.001	0.2 ± 0.04	16.9 ± 1.7	1.5 ± 0.1	2.0 ± 0.2
Acanthrophora spicifera	1.14 ± 0.17	20.0 ± 01.5	0.04 ± 0.004	4.2 ± 1.9	8.8 ± 1.6	1.5 ± 0.07	3.2 ± 0.1
Gracilaria salicornia	0.58 ± 0.13	15.7 ± 2.6	0.05 ± 0.004	10.4 ± 2.6	6.1 ± 1.8	1.1 ± 0.2	3.0 ± 0.2

Figure 1. Compost is being made from algae along with tree trimmings.

Figure 2. Radish grown on a field amended with algal compost.

Acknowledgements

- Archana Pant
- Jensen Uyeda
- Ted Goo
- Gita Neupane
- Robert Saito
- Roger Corrales
- Servalano Lamer
- Craig Okazaki
- •USDA Funding:
 - OREI
 - TSTAR
 - WSARE
 - ·Hatch

Sustainable and Organic Agriculture Program

College of Tropical Agriculture and Human Resources University of Hawai'i at Mānoa

http://www.ctahr.hawaii.edu/sustainag/

