

This project is in parts supported NRCS CIG NR 1892510002G004 and CTAHR Hatch 9034H.

Biofumigation

The use of glucosinolate (GL)-derived isothiocyanate (ITC) from brassica cover crops to suppress soil-borne pests and pathogens (Kirkegaard et al., 1993)

Biofumigation by MTBP

(Macerated, Till, cover with Black Plastic)

Seeding: 10 lb/acre

Flail mower

5 weeks

Till

Cover with plastic (1 week)

Suppression of root-knot nematodes by MTBP-Biofumigation

- Higher soil sulfate concentration one week after MTBP indicated higher efficacy of biofumigation of glucosinolate compounds compared to bareground (BG), no-till (NT), macerated no-till (MNT), no-till with black plastic (NTBP), till (T), and (macerated till).
- Efficacy of MTBP was observed on population of root-knot nematodes in the soil after a zucchini crops following the mustard treatment.

Solvita Test

Lettuce Biofumigation Test

- Biofumigation with brown mustard (M) or brown mustard plus water (MW) increased soil microbial activities as indicated by higher CO₂ burst. Thus, biofumigation increased soil microbial activities.
- But biofumigation did not reduce Fusarium wilt disease incidence on lettuce.

Disease Incidence

Solvita Test (Soil Respiration)

7 days after biofumigation

Lettuce Biofumigation Test

- Biofumigation with brown mustard (M) was more efficient in performing biofumigation than MW.
- Biofumigation with brown mustard + water (MW) achieved better green manure effect in Trial II (θ = 30%) than in Trial I (θ = 37%).
- Soil sulfate concentration was negatively related to Fusarium wilt incidence in Trial I, and positively related to number of lettuce plants that survived in Trial II.

Lettuce Yield

Sulfate as an indicator of biofumigation (7 days after initiation of biofumigation)

Soil Drenching of Solution from Organic Materials against Banana Fusarium Wilt

Treatments: (5 gal water / plant)

- A = Actinovate (*Steptomyces lydicus*),
- L = Lobster meal,
- M = Mustard (ground),
- Sb = Subtilex (Bacillus subtilis),
- Sh = Shrimp shell meal,
- V = Vermicompost tea,
- W = Water

Lobster meal suppressed Foc, mustard meal increased soil microbial activities.

Purple colonies were Fusarium colonies.

Mustard (ground)

Soil Drenching of Solution from Organic Materials on plant-

parasitic nematodes and soil health (8 weeks after treatment)

- Mustard resulted in lowest abundance of reniform nematodes.
- Lobster and mustard increased bacterivorous and fungivorous nematodes, vermicompost tea increase % omnivorous nematodes.
- Lobster enhanced bacteria decomposition, mustard enhanced fungal decomposition.

Nematode Suppression

Biofumigation by macerating mustard residues (17lb FW/plant) followed by drenching H_2O to achieve 30% gravimetric soil moisture (we use 5 gal/plant).

Foc Suppression

Lobster meal mix into water at 35 lb/1000 ft² soil (here we mix 0.32 lb with 5 gal water per plant).

Lobster meal contains chitin, thus enhance beneficial soil chitinfeeding microbes, that can dissolve cell wall of pathogenic fungi.

Soil Health

Brew uncured vermicompost tea >12 hours at 1:100 water, delivered 5 gal/plant.

