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Carbon Input to Ecosystems 

• Objectives 
– Carbon Input 

• Leaves 
– Photosynthetic pathways 

• Canopies (i.e., ecosystems) 
– Controls over carbon input 

• Leaves 
• Canopies (i.e., ecosystems) 

– Terminology 
• Photosynthesis vs. net photosynthesis vs. gross primary 

production vs. etc., etc., etc. 
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Carbon Input to Ecosystems 

• Carbon makes up ~1/2 of organic matter on Earth 
(H and O account for most of the rest) 
– Carbon (≈ Biomass) = Energy currency in ecosystems 

• Largely the same processes govern entry, transfers and losses 
of both C & energy 

• Photosynthesis provides carbon/energy that drives 
nearly all biotic processes 
– Controlled by: 

• Leaf:  Availability of water, nutrients, temperature, light, CO2 
• Ecosystem: Growing season length, leaf area 
• Both ultimately controlled by availability of soil resources, 

climate, and time since disturbance 
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Carbon Input to Ecosystems 
• Carbon cycles into, within, and out of ecosystems 

– Like H2O, but different controls, processes, & pathways 
• Start by focusing on ecosystem C input (i.e., GPP) 
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Carbon Input to Ecosystems 

• Gross Primary Productivity (GPP) = Net 
photosynthesis at the ecosystem scale 
– Net photosynthesis  = Gross photosynthesis – [Rleaf 

during the day + photorespiration] 
• Gross Photosynthesis = total CO2 Assimilation ≠ GPP 

 

• GPP - Autotrophic Respiration = Net Primary 
Production (NPP) 
– NPP is the net accumulation (or loss) of carbon by 

primary producers that is used to drive ecosystem 
processes 
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Carbon Input to Ecosystems 
• C enters via photosynthesis 

– Gross Primary Production (GPP) 
• Net photosynthesis (Gross photo - 
Rleaf during the day) 

1. Accumulates in ecosystems (C 
sequestration) as: (a) plant 
biomass; (b) Microbial biomass 
&/or SOM; or (c) animal biomass 

2. Returned to the atmosphere via 
(a) respiration (R; autotrophic or 
heterotrophic); (b) VOC 
emissions; or (c) disturbance 

3. Leached from or transferred 
laterally to another ecosystem 
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• Photosynthesis is most efficient when CO2 
supply matches CO2 demand of biochemical 
reactions 
– Physical limitation: delivery of CO2 to leaf by diffusion 

• Stomatal conductance & tradeoffs with H2O availability 

– Biochemical limitation: carboxylation rate 
• Light limitation 

– Solar radiation provides energy source for photosynthesis 
• Enzyme limitation 

– Enzymes use CO2 and energy from solar radiation to “fix” 
inorganic CO2 into organic form 

Carbon Input to Ecosystems 



7 

• Photosynthesis is comprised of 2 major sets 
of reactions: 

• Light-harvesting reactions (light dependent) 
– Photosystems I and II convert light energy into 

temporary chemical energy 
• Carbon fixation reactions (light independent) 

– Rubisco uses chemical energy to convert CO2 into 
sugars during carboxylation 

• More permanent form of chemical energy that can be 
stored, transported, or metabolized 

Carbon Input to Ecosystems 
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• 3 major photosynthetic pathways: 
– C3 photosynthesis  

• ~85% of species; ~80% of NPP 

– C4 photosynthesis 
• ~3% of species; ~20+% of NPP; ~1/3 of ice-free land 
• Tropical grasslands and savannas; salt marshes 
• Warm, high light, and/or dry environments 

– CAM photosynthesis 
• Not very common; Succulents, epiphytes; Plants adapted 

to extremley dry conditions 

– C3 photosynthesis is the fundamental mechanism 
by which carbon enters ALL terrestrial ecosystems 

Carbon Input to Ecosystems 
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• C3 photosynthesis  
– In chloroplasts in the mesophyll cells 

• Light harvesting reaction 
– Visible light (~40% of incoming solar radiation) 
– O2 is a “waste product” when H2O molecules are split 
– Limited by supply of light 

• Carbon fixation reaction (carboxylation) 
– Reduction of CO2 to 3-C sugars (phosphoglycerate) 
– Limited by products of light harvesting reaction, enzyme 

Rubisco (nutrients), & CO2 supply (i.e., internal CO2 
concentration) 

Carbon Input to Ecosystems 
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C3 mesophyll cell 

Simple overview of C3 photosynthesis 
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• C3 photosynthesis highlights 
– Large N requirement for 

enzymes (~50% of foliar N) 
– Dependence on products of 

light-harvesting reaction 
(which is limited by irradiance) 

– Frequently limited by CO2 
supply to chloroplasts 

Carbon Input to Ecosystems 
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Carbon Input to 
Ecosystems 

• Rubisco can gain or lose C??? 
• Carboxylase 

– Reacts with CO2 to produce sugars (carbon gain) 
• Oxygenase (≈photorespiration) 

– Reacts with O2 to convert sugars to CO2 (carbon loss) 
• Photorespiration uses 20-40% of carbon fixed during 

photosynthesis in C3 plants!!! 
– Why? 

• Early Earth had low O2 and high CO2 concentrations 
• Regenerates ADP and NADP for light reactions - Safety valve 

– Keeps light harvesting reaction going when CO2 is limiting 
– Limits presence of O2 radicals 
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• GPP = Net photosynthesis 
•  = Total CO2 assimilation – (foliar respiration in day + 

photorespiration) 
•  = Net rate of C gain in leaves 
• Overall efficiency of 1-2% of incoming solar radiation 

• Often limited by supply of CO2, and/or light 

Carbon Input to Ecosystems 
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•Photosynthesis is a diffusion process 
•Assimilation (A) ≈ (Ca - Ci) * gs    (A ≈ Driving force * Conductance) 

Carbon Input to Ecosystems 

Ci 

Ca 
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• Photosynthesis is a constant 
compromise / tradeoff between 
H2O loss and CO2 uptake 
– Transpiration vs. Photosynthesis 

• Photosynthesis: 1 H2O molecule for 
every CO2 molecule 

• Transpiration: 400 molecules of H2O 
lost for every molecule of CO2 absorbed 

– Stomata regulate this tradeoff 

Carbon Input to Ecosystems 

CO2 H2O 

Sunlight 

6CO2 + 6H2O + energy <--> C6H12O6 + 6O2 
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• C4 photosynthesis  
– C3 photosynthesis + an additional set of reactions 

•  PEP carboxylase produces 4-C acid in mesophyll cells 
– Transported to bundle sheath cells 

• In bundle sheath cells, 4-C acid is decarboxylated (releases 
CO2) and C3 photosynthesis occurs (Calvin Cycle) 
 

– The major benefit of C4 photosynthesis is increased 
carboxylation under conditions that would otherwise 
favor photorespiration in C3 plants 

Carbon Input to Ecosystems 
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Overview of C4 photosynthesis 
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• C4 photosynthesis highlights 
– Concentrates CO2 in bundle sheath cell where 

Rubisco fixes carbon 
• Increases the efficiency of Rubisco carboxylation 
• Greatly reduces photorespiration 
• Reduces the quantity of Rubisco (and N) required 

– PEP carboxylase is more efficient than Rubisco at 
drawing down Ci 

• Increases CO2 gradient → CO2 diffuse more readily → 
reduces water loss (stomata can be more closed) 

– Why aren’t all plants C4? 
• PEP requires 30% more energy to regenerate 

Carbon Input to Ecosystems 
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Carbon Input to Ecosystems 
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Carbon Input to Ecosystems 
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• Net photosynthesis by individual leaves 
– Plants adjust components of photosynthesis so 

physical and biochemical processes co-limit 
• Diffusion of CO2 ≈ Capacity of Rubisco to fix CO2 

• Largely a stomatal control at low CO2 

• A also limited by light, nutrients (N), water, and temp. at high CO2 

Carbon Input to Ecosystems 
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• Net photosynthesis by individual leaves 
– Plants adjust components of photosynthesis so that 

light harvesting and CO2-fixation reactions match 
• Over minutes to hours, plants adjust stomatal conductance 
• Over course of leaf development, enzymes are distributed between 

light harvesting & carbon fixation based on prevailing env. 

Carbon Input to Ecosystems 
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Light response curve of photosynthesis 

Carbon Input to Ecosystems 

Slope = quantum 
yield of photo. (Light 
Use Efficiency; LUE) 

Net respiration 
(C source) 
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• LUE = A per unit of light received 
= initial, linear slope of light response curve 

• Nearly constant in C3 plants at low light (~6%) 
– i.e., linear portion of light response curve is same in 

all C3 plants 

Carbon Input to Ecosystems 
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•Presence of multiple 
species increases range 
of light levels over which A 
responds linearly to light 
 

•Important because of 
large decreases in 
incident light as you move 
down thru the canopy 

Carbon Input to Ecosystems 
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Carbon Input to Ecosystems 

• Within a given plant, sun vs. 
shade leaves are adapted 
to their light environments 
– Sun leaf takes longer to reach 

LCP, but has higher LSP 
– Shade leaf reaches LCP 

earlier, but has lower LSP 
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•Photosynthetic capacity (Amax) 
•A per unit leaf mass under ideal conditions 

•C gain potential per unit investment in leaf biomass 

•10 to 50-fold difference across species 
•Little to nothing to do with light availability 

Carbon Input to Ecosystems 
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•Photosynthesis 
correlates strongly with 
leaf N content 
•Why? 

•~50% of foliar N is in 
photosynthetic enzymes 

Carbon Input to Ecosystems 
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•Plants with high photosynthetic 
rates necessarily have high 
stomatal conductance (gs) 

grasslands crops 

conifers 

Carbon Input to Ecosystems 
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•Tradeoff between traits maximizing 
photosynthesis & leaf longevity 

•In nutrient-limited environments, insufficient 
nutrients to support rapid leaf turnover 

•Long-lived leaves have ↓ N content, so must 
photosynthesize longer to “break even” 

•Long-lived leaves contain lots of non-
photosynthetic compounds 

•Herbivore protection 
•Desiccation resistant 

•Structural requirements cause long-lived 
leaves to be dense 

•Surface area per unit biomass, or 
Specific Leaf Area (SLA; cm2 g-1) 

Carbon Input to Ecosystems 
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•SLA = surface area / mass 
(e.g., cm2 g-1) 

•Good predictor of 
photosynthetic capacity 

•Easily measured 
•Often used in ecosystem 
comparisons as an index of 
photosynthetic capacity 

Carbon Input to Ecosystems 
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•Leaf-level controls over photosynthesis 

Carbon Input to Ecosystems 

Light Temperature 

Nutrients H2O 
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• Suite of physiological traits that influence carbon 
gain (low vs. high resource env.) 
– Leaf nitrogen concentration  
– Leaf longevity 
– Specific leaf area 
– Growth rate 

• All depend to a high degree on availability of soil 
resources 

Carbon Input to Ecosystems 
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• H2O limitation reduces the capacity of leaves to 
match CO2 supply with light availability 
– Short-term response: reduce stomatal conductance 

• CO2 supply, A, and LUE decline 

– Long-term response: reduce leaf area and/or radiation 
absorption (reflectance, leaf angle) 

• Increases LUE 

Carbon Input to Ecosystems 
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• WUE = Carbon gain per unit water loss 
– As stomata close, H2O loss declines to a greater 

extent than CO2 absorption 
• WUE is high in plants from dry environments 

– WUE is highest in CAM and C4 plants 
– Varies within a given species/individual, 

seasonally, annually, etc. 
 

Carbon Input to Ecosystems 
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• Canopy controls over GPP 
– Most leaf-level controls still function in entire 

canopies 
– Leaves at top of canopy carry out most of the 

photosynthesis 
• Receive most light 
• Typically youngest; most N-rich leaves; high SLA; etc. 

Carbon Input to Ecosystems 
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• Canopy controls over GPP dominated by: 
–  Leaf area 

• often expressed as LAI (leaf area per unit ground area; 
m2 m-2) 

• Largely controlled by soil resource availability 

– Growing season length 
– Environmental controls over photosynthesis 

• Important, but secondary, for controlling GPP 
• Most important for controlling Leaf Area 

Carbon Input to Ecosystems 
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• Canopy controls over GPP 
– Light attenuation thru canopies (sun vs. shade leaves) 

Carbon Input to Ecosystems 
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• Canopy controls over GPP 
– Multiple canopy layers 

maximize C gain potential 
– Light response curve of a 

canopy maintains constant 
LUE over a broader range of 
light availability than a leaf 

Carbon Input to Ecosystems 
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• Most ecosystems have ~open 
canopies (70% of ice-free area) 
• Soil resources largely control 
LAI 
•Close correlation between leaf 
area and GPP 

•Not so much for really 
dense canopies 

Carbon Input to Ecosystems 
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• Growing season length 
response to rising 
temperatures??? 

•Warm winters lead to 
earlier onset of “greening” 
and photosynthesis 

•3.9 days earlier per 
1°C rise in winter temp 

Carbon Input to Ecosystems 

Maignan et al. (2008) 
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• Growing season length 
increases in response to 
rising atmospheric CO2 
concentrations 

•Higher CO2 conc. leads to: 
•Delayed autumnal 
senescence 
•Increased photosynthetic 
activity in the fall 

Carbon Input to Ecosystems 

Taylor et al. (2008) 



43 

• Take-home points about photosynthesis: 
1. Plants balance biochemical and physical 

limitations to photosynthesis 
2. Plants balance photosynthetic capacity with 

soil resource availability via LAI 
3. Plants adjust leaf area to maintain ~constant 

LUE 

Carbon Input to Ecosystems 
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• Major controls over GPP (net photosynthesis) 
1. Quantity of leaf area 

– Reduced by herbivores and pathogens 
2. Length of photosynthetic season 

– Global climate change? 
3. Photosynthetic rate of individual leaves 

– Inherent photosynthetic capacity 
– Environmental stress 

Carbon Input to Ecosystems 



45 Which are being altered by humans? 
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Carbon Input to Ecosystems 

• How do you measure GPP? 
– Measure photosynthesis of every leaf in the 

canopy? 
 
 
 

 
– Measure a few leaves and scale to the canopy? 

→ → 

http://www.humboldt.edu/~sillett/photos/canopyscience/22_Marie-with-Licor.jpg
http://images.google.com/imgres?imgurl=http://www.nasa.gov/images/content/61355main_hanpp_forest.jpg&imgrefurl=http://www.nasa.gov/lb/vision/earth/environment/0624_hanpp.html&h=750&w=1125&sz=309&hl=en&start=8&um=1&tbnid=aDKtLzIARKGyvM:&tbnh=100&tbnw=150&prev=/images?q=forest+canopy&svnum=10&um=1&hl=en&rlz=1T4DMUS_enUS241US243&sa=N
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Carbon Input to Ecosystems 

• How do you measure GPP? 
– RS / Modeling studies 

• LAI estimates from remote 
sensing (and/or field studies) 

• APAR from remote sensing 
• LUE from existing studies 
• Plug it all into a TEMs or DGVM 

Forest Grassland 
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• How do you measure GPP? 
– Eddy flux / covariance 

• CO2 sensor above the canopy 
– Vertical flux of CO2 is a function 

of the covariance of wind 
velocity and gas concentration 

• Really measure Net Ecosystem 
Exchange (NEE) 
– NEE = GPP - Recosystem 

Carbon Input to Ecosystems 

http://en.wikipedia.org/wiki/File:EddyCovariance_diagram_2.jpg
http://en.wikipedia.org/wiki/File:EddyCovariance_diagram_1.jpg
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• How do you measure 
GPP? 
– Sum of individual 

components 
• Need measurements of 

all the individual 
components 

• Only ~30 studies 
worldwide 

2. ANPPfoliage 4. Rfoliage  

5. Rwood  3. ANPPwood 

6. TBCF = BNPProot + Rroot + Exudates + 
Mycorrhizae 

1. GPP 

Litton et al. (2007) 

Carbon Input to Ecosystems 
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