- Objectives
 - Overview of silviculture
 - Structural measures used to characterize forest stands and resources
 - First: questions, take-home points, things you learned, etc. from reading assignment

Silviculture is to forestry as agronomy is to agriculture in that it is concerned with the technology [i.e., science] of growing vegetation. Like the rest of forestry itself, silviculture is an applied science that rests on the more fundamental natural and social sciences.

Silviculture - Applied Forest Ecology

- Silviculture Applied Forest Ecology
 - Ecological forestry (Franklin et al. 2007)
 - Emulation of natural disturbances and resulting stand development processes as a model for silvicultural practices
 - 3-legged stool of ecological forestry
 - Retention of biological legacies at harvest
 - Intermediate treatments to enhance stand heterogeneity (structural & compositional)
 - Allowance of appropriate recovery periods between harvests

Silviculture - Applied Forest Ecology
– Ecological forestry (Franklin et al. 2007)

Silviculture - Applied Forest Ecology

Silviculture - Applied Forest Ecology

Silviculture - Applied Forest Ecology
– Silvicultural practices / treatments

Thinning

Pruning

- Silviculture Applied Forest Ecology
 - Silvicultural practices
 - Control of stand structure & processes
 - Control of composition
 - Control of stand density
 - Control of rotation length
 - Facilitating harvest
 - Restocking/renewing next cohort
 - Protection
 - Conservation of site productivity

• Forest Structure - Stand Density

10 m

• Forest Structure - DBH

inside circle is DBH (cm)

Forest Structure – Diameter Distribution

- Forest Structure Basal Area (Ind. Tree)
 - Cross-sectional area of an individual tree at breast height (cm² or m²)
 - $-BA = (\pi^*dbh^2) / 4$
 - For dbh in cm and BA in cm²
 - $-BA = (\pi^*dbh^2) / (4 * 10,000)$
 - For dbh in cm and BA in m²

- Forest Structure Basal Area (Stand)
 - Typically expressed as square units of BA (m²) per unit of land area (ha); m²/ha (or cm²/m²)

• Forest Structure - Quadratic Mean Diameter

 $QMD(cm) = \sqrt{(MeanBA/0.0000785)}$

– For QMD (cm) from Mean BA (m²)

- Forest Structure Annual Increment
 - MAI = Mean Annual Increment
 - Volume or mass per unit area / Age
 - CAI = Current Annual Increment
 - Volume or mass at the end of the current year -Volume or mass at the beginning of the current year
 - PAI = Periodic Annual Increment
 - (Volume or mass at the end of a period Volume or mass at the beginning of the period) / length of the period
 - If length of the period is 1 year, then PAI = CAI

Forest Structure - Annual Increment

- Forest Structure Allometry
- Biomass

Metrosideros polymorpha

Litton & Kauffman (2008)

• Forest Structure – Site Index

• Forest Structure – Site Index & Volume

- Forest Characterization Exercise
 - Purpose: (a) experience calculating some of the more commonly used metrics of forest resources; and (b) to prep you for Mid-term II
 - Assigned 3/7/16 via email
 - Due 3/17/16 in class via hardcopy print