Objectives

Thinning practices to manage stand growth and yield

 First: questions, take-home points, things you learned, etc. from reading assignment

Pruning

Self Pruning

Artificial Pruning

Thinning

Thinning represents the primary means by which the yield of stands can be increased beyond the best that might be achieved under purely natural conditions.

Low Thinning

Crown Thinning

Selection Thinning

Geometric/Mechanical Thinning

Ecological Forestry

Table 4.—Contrasts between the outcomes of tree mortality processes and traditional thinning treatments

	Unmanaged stand			Managed stand	
Process	Cause	Outcomes	Treatment	Purpose	Outcomes
Competitive tree mortality	Resource competition	-Larger trees retained -Competitively superior trees favored regardless of species -Shift toward uniform tree size distribution, but variability occurs -Tree quality and form will vary	Silvicultural thinning	-Free growing space for crop trees -Capture economically valuable wood before mortality	-Larger trees favored -Commercial species favored -Strong shift toward uniform tree size distribution -Poor quality trees removed
Small-scale canopy disturbance	Exogenous agents (ice, wind, fire, insects, disease)	-Dominant individuals removed -Creation of canopy openings -Canopy closure from adjacent trees -Height recruitment of existing regeneration -Establishment of regeneration -Establishment or growth of shrub and herbaceous plants -Generation of snags or large wood on the ground	Few silvicultural analogs implemented as an intermediate treatment, as opposed to a regeneration treatment		

Ecological Forestry

- -0.10 ha grid scale
- -Vary thinning by 0.10 ha units
- -20% skips (black)
- -20% gaps (light gray)
- -60% thinned (gray)

Figure 29.—Stylized representation of variable density thinning: (a) unthinned stand; (b) thinned stand displaying horizontal variation in stand density including gaps, skips (unthinned areas), and lightly thinned matrix.

- The total cubic volume of wood that can be produced by a given stand in a given length of time may be reduced, but rarely increased by thinning
 - Thinning concentrates resources, and subsequent yield, in fewer trees that are typically larger diameter (i.e., more valuable)
 - Exceptions:
 - » Selection thinning which maximizes the number of harvest trees (not large tree size)
 - » Variable Density Thinning to promote stand heterogeneity

- Thinning Does it work?
 - -Scowcroft et al. (2007)
 - Crown thinning (crop tree) in 25-yr old secondary Acacia koa vs. Unthinned
 - Herbicide of understory grasses
 - Application of P fertilizer
 - Herbicide + P
 - Initial stand density of 955 trees ha⁻¹ → 655 trees ha⁻¹ following thinning
 - Stand initiated at 20,000 trees ha⁻¹

Thinning - Does it work?

Thinning - Does it work?

