Calculating Size of Target Sites

August 2014

FOR PERSONS SEEKING CERTIFICATION BY
the State of Hawail Department of Agriculture
TO BUY, USE, OR SUPERVISE THE USE OF
RESTRICTED USE PESTICIDES

Other study material

This study guide is just one of the items in a complete set of study guides, which may be viewed at this webpage: http://pestworld.stjohn.hawaii.edu/studypackets/spcatgor.html

Introduction

To determine how much pesticide is needed for a job, you must measure and calculate the size of the site to be treated. The examples in this study guide show how to calculate the area of regularly shaped and irregularly shaped surfaces and the volume of some enclosed spaces.

Acknowledgement

This study guide is a modified version of pages 10-13 in Chapter 2 "Calculating Dilutions and Site Size" of the booklet Applying Pesticides Correctly: Private Applicator Supplement (Michigan State University Extension Bulletin E-2474, December 1993). Mahalo to staff of the Pesticides Branch, Hawaii Department of Agriculture for significant comments.

This study guide was developed for the Pesticide Risk Reduction Education program, a Cooperative Extension Service program of the College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa. Please direct any question or comment about this guide to:

Charles Nagamine
Department of Plant and Environmental Protection Sciences
3190 Maile Way Room 307
Honolulu, HI 96822
Telephone: (808) 956-6007
Email: cynagami.hawaii.edu

LENGTH
125 ft .

LENGTH
67 ft .

125 ft .
LENGTH

Rectangle

Area $=$ Width \times Length
Example:
A) Area $=40 \mathrm{ft} . \times 125 \mathrm{ft}$.
B) Area $=5,000 \mathrm{sq} . \mathrm{ft}$.

Trapezoid

Area $=$ Width \times Average Length
Example:
A) Average length $=(67 \mathrm{ft} .+125 \mathrm{ft}) \div$.

Add numbers between parentheses before dividing by 2 .
B) Average length $=192 \mathrm{ft} . \div 2=96 \mathrm{ft}$.
C) Area $=40 \mathrm{ft} . \times 96 \mathrm{ft}$. $=3,840 \mathrm{sq} . \mathrm{ft}$.

Triangle

Area $=$ Width \times Height $\div 2$
Example:
A) Area $=55 \mathrm{ft} . \times 53 \mathrm{ft} . \div 2$
B) Area $=2,915 \mathrm{sq} . \mathrm{ft} . \div 2=1,457.5 \mathrm{sq} . \mathrm{ft}$.

Circle

$$
\text { AREA }=3.14 \times \text { RADIUS } \times \text { RadIUS }
$$

Example:

A) Area $=3.14 \times 35 \mathrm{ft} . \times 35 \mathrm{ft}$.
B) Area $=3,846.5 \mathrm{sq} . \mathrm{ft}$.

Irregular Shape \#1

Think of this shape as a combination of one triangle and two rectangles. Calculate the areas of the individual triangle and rectangles. Then add the three areas together to get an estimate of the total area.
$\operatorname{AREA}=\begin{aligned} & \text { AREA of } \\ & \text { triangle }\end{aligned}+\begin{aligned} & \text { area of } \\ & \text { tall rectangle }\end{aligned}+\begin{aligned} & \text { AREA of } \\ & \text { Short rectangle }\end{aligned}$
AREA $=(W \times H \div 2)+\left(L_{1} \times W_{1}\right)+\left(L_{2} \times W_{2}\right)$
Example:
A) Area $=(25 \mathrm{ft} . \times 25 \mathrm{ft} . \div 2)+(42 \mathrm{ft} . \times 30 \mathrm{ft})+.(31 \mathrm{ft} . \times 33 \mathrm{ft}$. Multiply and divide numbers between parentheses before adding.
B) Area $=(625 \mathrm{sq} . \mathrm{ft} . \div 2)+1,260 \mathrm{sq} . \mathrm{ft} .+1,023 \mathrm{sq} . \mathrm{ft}$.
C) Area $=312.5 \mathrm{sq} . \mathrm{ft} .+1,260 \mathrm{sq} . \mathrm{ft} .+1,023 \mathrm{sq} . \mathrm{ft}$.
D) Area $=2,595 \mathrm{sq} . \mathrm{ft}$.

Irregular Shape \#2

For a shape that resembles a rectangle, establish a line down the middle as the length. For the width, use the average of several side-to-side measurements along the middle line. To estimate the area, multiply the length and the width.

$$
\text { AREA }=\text { LENGTH } \times(\mathbf{a}+\mathbf{b}+\mathbf{c}+\mathbf{d}+\mathbf{e}) \div \underset{\text { SIDE-TO-SIDE MEASUREMENTS }}{\text { NUMBER OF }}
$$

Example:

A) Area $=45 \mathrm{ft} . \times(22 \mathrm{ft} .+21 \mathrm{ft} .+15 \mathrm{ft} .+17 \mathrm{ft} .+22 \mathrm{ft}) \div$. Add numbers between parentheses before multiplying and dividing.
B) Area $=45 \mathrm{ft} . \times 97 \mathrm{ft} . \div 5$
C) Area $=45 \mathrm{ft} . \times 19.4 \mathrm{ft}$.
D) Area $=873 \mathrm{sq} . \mathrm{ft}$.

Irregular Shape \#3

For a shape that resembles a circle, first estimate the radius by calculating the average of 10 or more measurements from an approximate center point to the edge of the area. Then estimate the area by using the formula for a circle.

Radius $=(\mathbf{a}+\mathbf{b}+\mathbf{c}+\mathbf{d}+\mathbf{e}+\mathbf{f}+\mathbf{g}+\mathbf{h}+\mathbf{i}+\mathbf{j}) \div$ NUMBER OF MEASUREMENTS

$$
\text { AREA }=3.14 \times \text { Radius } \times \text { Radius }
$$

Example:

A) Radius $=(10 \mathrm{ft} .+12 \mathrm{ft} .+16 \mathrm{ft} .+15 \mathrm{ft} .+11 \mathrm{ft} .+12 \mathrm{ft} .+10 \mathrm{ft} .+9 \mathrm{ft} .+13 \mathrm{ft} .+16 \mathrm{ft}) \div$. Add numbers between parentheses before dividing.
B) Radius $=124 \mathrm{ft} . \div 10=12.4 \mathrm{ft}$.
C) Area $=3.14 \times 12.4 \mathrm{ft} \times 12.4 \mathrm{ft}$.
D) Area $=483 \mathrm{sq} . \mathrm{ft}$.

Volumes of Enclosed Spaces

Box

To calculate the volume, multiply the length, width, and height.

Volume $=$ Length \times Width \times Height
Example:
A) Volume $=125 \mathrm{ft} . \times 40 \mathrm{ft} . \times 12 \mathrm{ft}$.
B) Volume $=60,000$ cubic ft .

Flat-top Tent

To find the volume, multiply the area of the TRAPEZOID (front surface) by the length.

Volume $=$ Area of trapezoid \times Length
Example:
A) Area of trapezoid $=(40 \mathrm{ft} .+30 \mathrm{ft}) \div 2 \times 12 \mathrm{ft}$. Add numbers between parentheses before multiplying and dividing.
B) Area of trapezoid $=70 \mathrm{ft} . \div 2 \times 12 \mathrm{ft}$.
C) Area of trapezoid $=35 \mathrm{ft} . \times 12 \mathrm{ft} .=420 \mathrm{sq} . \mathrm{ft}$.
D) Volume $=420 \mathrm{sq} . \mathrm{ft} . \times 125 \mathrm{ft}$.
E) Volume $=52,500$ cubic ft .

Tent

To find the volume, multiply the area of the tRIANGLE (front surface) by the length.

Volume $=$ Area of triangle \times Length
Example:
A) Area of triangle $=40 \mathrm{ft} . \times 12 \mathrm{ft} . \div 2$
B) Area of triangle $=480$ sq. ft. $\div 2=240$ sq. ft.
C) Volume $=240 \mathrm{sq} . \mathrm{ft} . \times 125 \mathrm{ft}$.
D) Volume $=30,000$ cubic ft .

Cylinder

To find the volume, multiply the area of the CIRCLE (base) by the height.

Volume $=$ Area of circle \times Height
Example:
A) Area of circle $=3.14 \times 35 \mathrm{ft} . \times 35 \mathrm{ft}$.
B) Area of circle $=3,846.5 \mathrm{sq} . \mathrm{ft}$.
C) Volume $=3,846.5 \mathrm{sq} . \mathrm{ft} . \times 125 \mathrm{ft}$.
D) Volume $=480,813$ cubic ft .

Quonset Hut

This shape is half of a cylinder. To find the volume, multiply the area of the HALF CIRCLE (front surface) by the length.

Volume $=$ Area of half circle \times Length
Example:
A) Area of whole circle $=3.14 \times 12 \mathrm{ft} . \times 12 \mathrm{ft}$.
B) Area of whole circle $=452.16 \mathrm{sq} . \mathrm{ft}$.
C) Area of half circle $=452.16 \mathrm{sq} .\mathrm{ft} . \div 2$
D) Area of half circle $=226.08 \mathrm{sq} . \mathrm{ft}$.
E) Volume $=226.08 \mathrm{sq} . \mathrm{ft} . \times 40 \mathrm{ft}$.
F) Volume $=9,043$ cubic ft .

Half-circle-over-rectangle Ends

Triangle-over-rectangle Ends

Calculate the area of the triangle as above. Also calculate the area of the rectangle. Add these two areas together and then multiply the sum by the length of the structure.

Volume $=($ Area of triangle + Area of rectangle $) \times$ Length
Example:
A) Area of triangle $=20 \mathrm{ft} . \times 8 \mathrm{ft} . \div 2=80 \mathrm{sq} . \mathrm{ft}$.
B) Area of rectangle $=20 \mathrm{ft} . \times 8 \mathrm{ft} .=160 \mathrm{sq} . \mathrm{ft}$.
C) Volume $=(80 \mathrm{sq} . \mathrm{ft} .+160 \mathrm{sq} . \mathrm{ft}.) \times 40 \mathrm{ft}$. Add numbers between parentheses before multiplying.
D) Volume $=240 \mathrm{sq} . \mathrm{ft} . \times 40 \mathrm{ft}$.
E) Volume $=9,600$ cubic ft .

