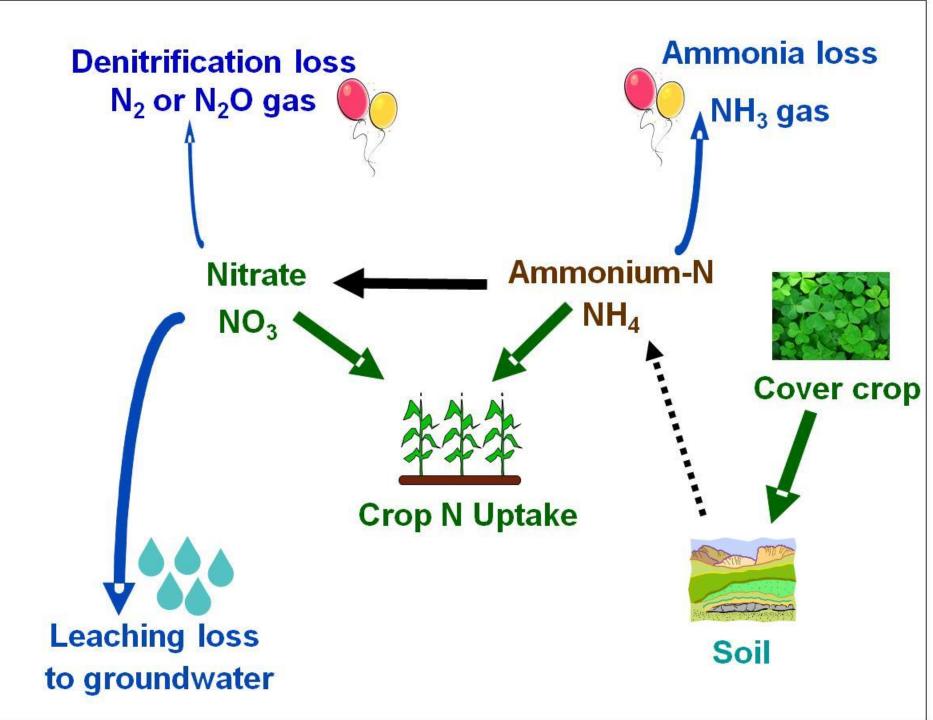
Accounting for plant-available nitrogen from cover crops in vegetable production systems

Dan M. Sullivan OSU Extension Soil Scientist & Nick Andrews OSU Small Farms Extension

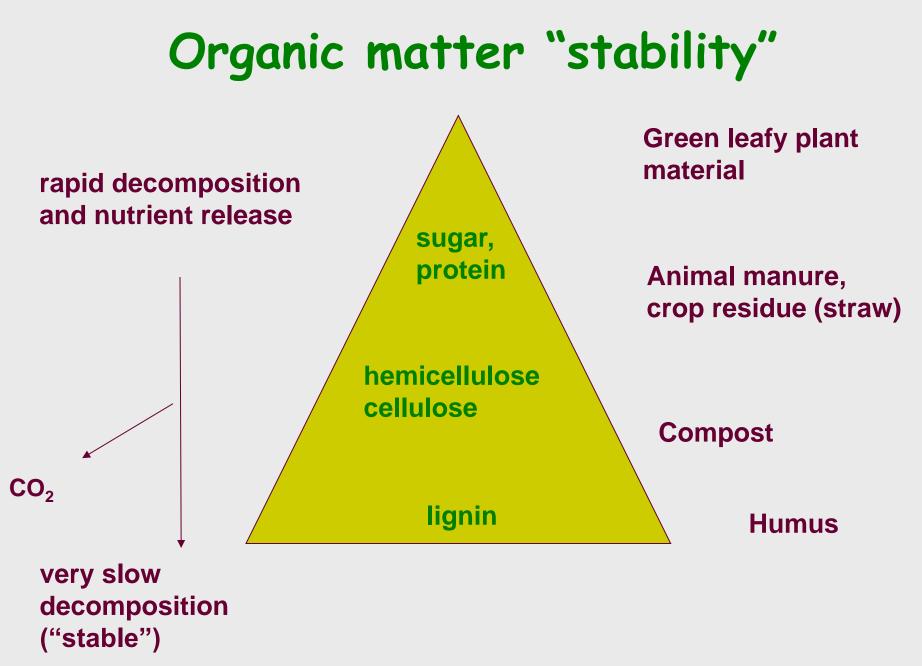
June 2016, Oahu


SARE

Sustainable Agriculture

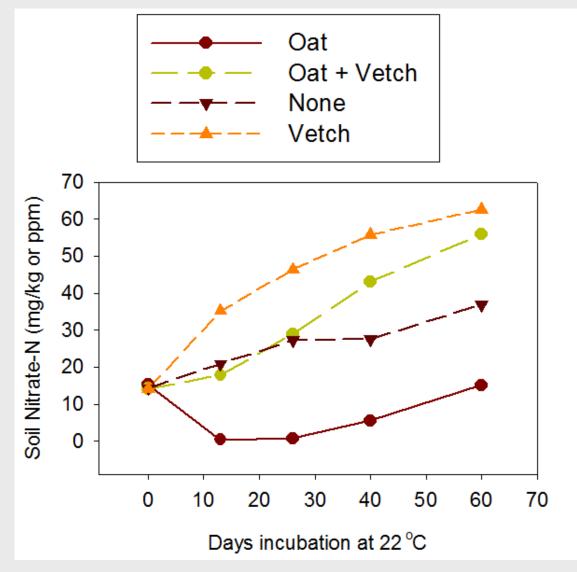
Research & Education

Extension Service


Oregon State

Mineralization: rate limiting process in OM -> plant available N

Release of N from "stable" organic matter


- 1 to 4% of soil organic N mineralized each year
- function of environment: temp, moisture, pH, aeration
- Release of N from "fresh" organic matter additions
 - function of C:N ratio
 - release 0 to 60%+ of N

Adapted from: SARE Handboook 4, Building Soils for Better Crops, Fig 8.1

Incubation of cover crop in lab (nitrate-N accumulation = N mineralization)

Datta, Garrett et al., 2008

Soil Fertility in Organic Systems: A Guide for Gardeners and Small Acreage Farmers

A PACIFIC NORTHWEST EXTENSION PUBLICATION • PNW646

Step-by-step guide to determining an organic nitrogen fertilizer rate:

	Steps	Information source
1	General crop nitrogen recommendation	University nutrient management guides

Crop N requirement

Table 1. Nitrogen requirement of vegetable crops based on seasonal nitrogen uptake

Low Total N Need <120 lb/acre	Medium Total N Need <120-200 lb/acre	High Total N Need >200 lb/acre		
Baby greens	Carrot	Broccoli		
Beans	Corn, Sweet	Cabbage		
Cucumbers	Garlic	Cauliflower		
Radish	Lettuce	Celery		
Spinach	Spinach Melons			
Squashes				
	Peppers			
Tomatoes				
— Gaskell et al. 2006, Soil Fertility Management for Organic Crops				

Soil Fertility in Organic Systems: A Guide for Gardeners and Small Acreage Farmers

A PACIFIC NORTHWEST EXTENSION PUBLICATION • PNW646

Step-by-step guide to determining an organic nitrogen fertilizer rate:

Steps		Information source	
1	General crop nitrogen recommendation	University nutrient management guides	
2	Cover crop nitrogen contribution	OSU Organic Fertilizer & Cover Crop Calculator	

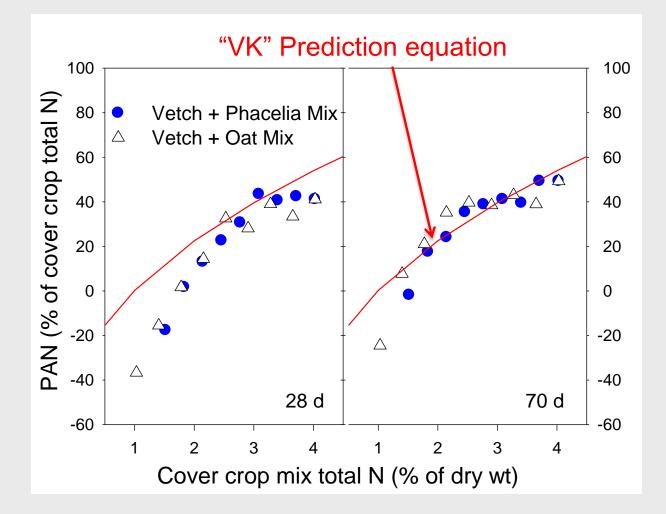
Cover crop PAN

- 1. Plant-available N (PAN)
- Produced by soil biota. Called "mineralization"
- 3. Organic N to nitrate-N (plant-available)
- 4. Based on:
 - Biomass (dry matter)
 - Total N concentration in dry matter
 - Estimate (0 to 50%) of cover crop total N that is converted to plant-available nitrate-N

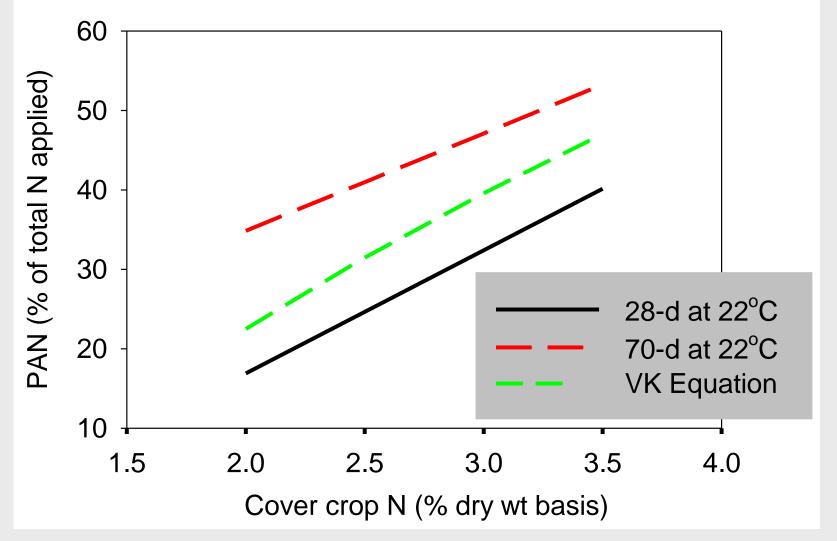
Predicting PAN from cover crops

Incubations to measure plant-available N

Cut cover crop


Add to 0.9 L (1-qt) freezer bag

Mix with moist soil (200 to 250g H_2O/kg)


Incubate at room temperature (22 °C); extract soil; measure nitrate-N

PAN for cover crops (OSU Calculator) cover crop mixes, 2008

Prediction Equation: Vigil and Kissel (1991) SSSAJ 55:757

Three yr summary: VK Equation vs. lab incubation (22°C or 72°F)

Sullivan and Andrews, 2011 WNMC proceedings

Cover crop PAN: PNW 636

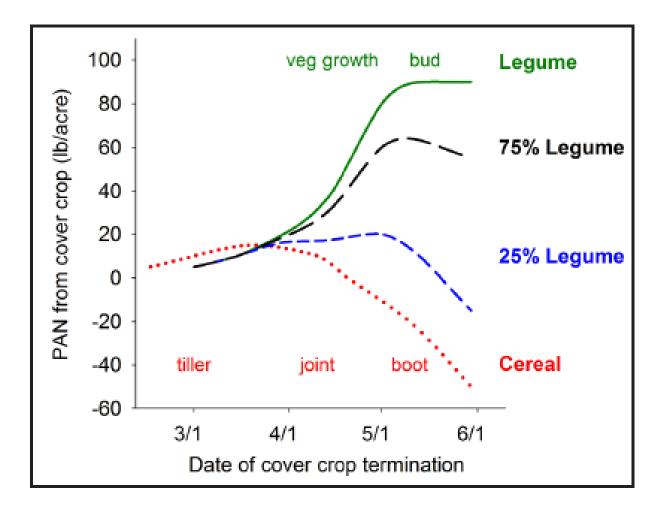
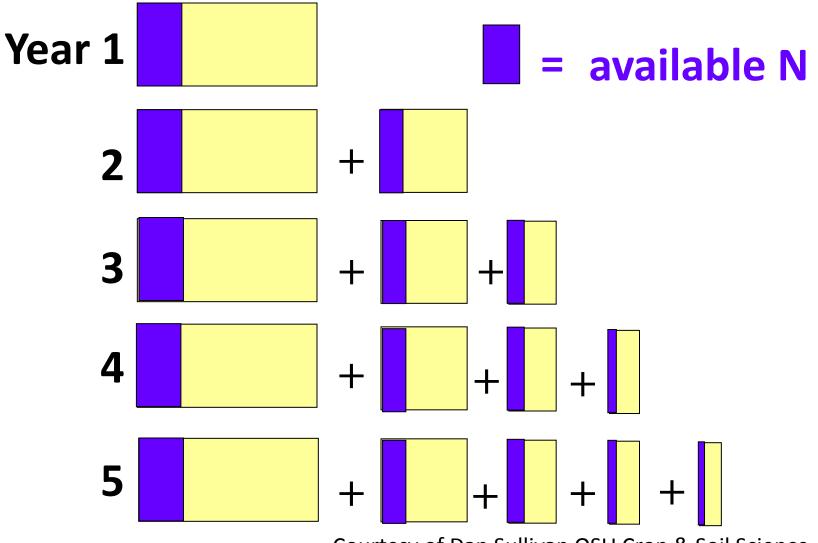
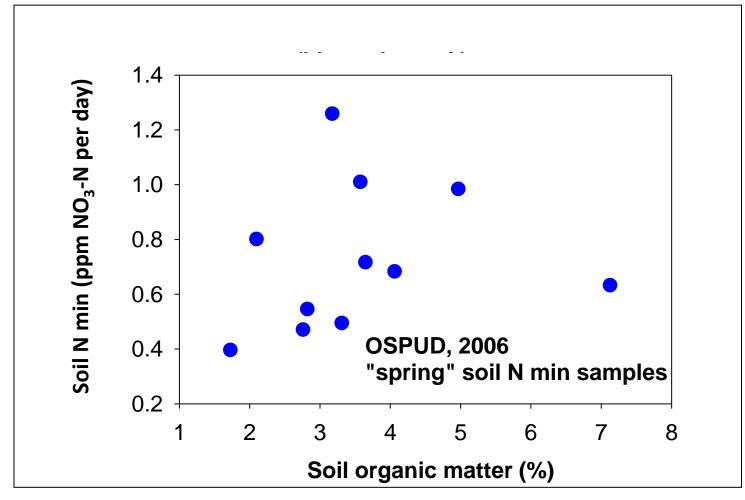


Figure 4. Effect of kill date on typical plant-available N (PAN) release from cereal, legume, or mixed stands. Based on compilation of field data from Willamette Valley cover crop


Soil Fertility in Organic Systems: A Guide for Gardeners and Small Acreage Farmers

A PACIFIC NORTHWEST EXTENSION PUBLICATION • PNW646

Step-by-step guide to determining an organic nitrogen fertilizer rate:


Steps		Information source		
1	General crop nitrogen recommendation	University nutrient management guides		
2	Cover crop nitrogen contribution	OSU Organic Fertilizer & Cover Crop Calculator		
3	Additional soil organic matter contribution	Estimate from previous soil building practices		

Cumulative PAN from an organic source

Courtesy of Dan Sullivan OSU Crop & Soil Science

Does total soil organic matter correlate with N mineralized from soil OM?

PAN from soil organic matter

- Make pre-plant estimate based on field/farm history, rotation, etc.
 - Ballpark estimate: after 3 years of organic management with increased organic inputs, PAN from soil organic matter will increase by at least 50 lb N/acre
- Monitor soil nitrate in growing season (PSNT timing) and crop performance
- Adjust N mineralization credit for future years

Soil Fertility in Organic Systems: A Guide for Gardeners and Small Acreage Farmers

A PACIFIC NORTHWEST EXTENSION PUBLICATION • PNW646

Step-by-step guide to determining an organic nitrogen fertilizer rate:

	Steps	Information source		
1	General crop nitrogen recommendation	University nutrient management guides		
2	Cover crop nitrogen contribution	OSU Organic Fertilizer & Cover Crop Calculator		
3	Additional soil organic matter contribution	Estimate from previous soil building practices		
4	Site specific nitrogen recommendation	Line 1 – line 2 – line 3		
5	Fertilizer PAN	OSU Organic Fertilizer & Cover Crop Calculator		

New from Pacific NW Extension: Fertilizing with Manure and other organic amendments (PNW 533)

FERTILIZING WITH MANURE AND OTHER ORGANIC AMENDMENTS

PAN from <u>uncomposted</u> manure (PNW 533)

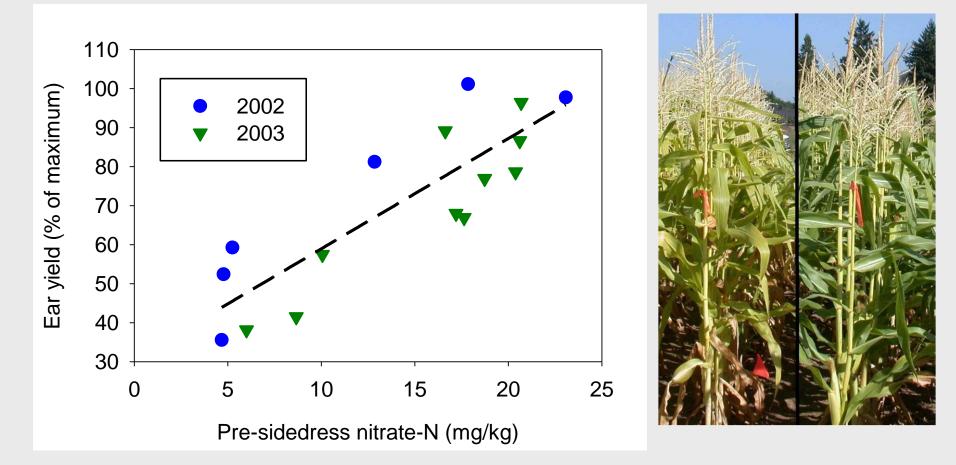
Туре	1	C/N ratio		vailable N	c
Type		Tutto	% of total N	lb/ton as-is	lb/cubic yd
Broiler with litter		11	40 to 60	22–34	10-14
Laying hen		8	40 to 60	16–24	11–16
Turkey		9	40 to 60	20-30	10-15
Rabbit		12	20 to 40	4–8	3–6
Sheep		12	20 to 40	3–7	2–5
Goat		14	15 to 30	2–5	2–4
Beef		15	15 to 30	2–4	1.5–3
Llama		15	15 to 30	2–4	1.5–3
Alpaca		15	15 to 30	2–4	1.5–3
Stockpiled dairy manure ^f		15	10 to 20	2–4	1–2
Horse no bedding		20	0 to 15	0–1	0-0.7
Horse with bedding		30	-5 ^g to 10	< 1	< 1
Dairy cow separated solids		32	-5 to 10	< 1	< 1

PAN from <u>composted</u> manure (PNW 533)

	Total N	C/N ratio	A	vailable N	c
	% dry weight		% of total N	lb/ton as-is	lb/cubic yd
Broiler litter "compost" ^e	3.8	10	30 to 40	12–18	6–9
Rabbit manure compost	1.8	10	15 to 30	2–5	1.5–3
Beef manure compost	1.4	11	0 to 10	2–4	0.8–1.6
Separated dairy solids compost	2.1	18	0 to 10	0–1	0-0.7

Soil Fertility in Organic Systems: A Guide for Gardeners and Small Acreage Farmers

A PACIFIC NORTHWEST EXTENSION PUBLICATION • PNW646


Step-by-step guide to determining an organic nitrogen fertilizer rate:

	Steps	Information source		
1	General crop nitrogen recommendation	University nutrient management guides		
2	Cover crop nitrogen contribution	OSU Organic Fertilizer & Cover Crop Calculator		
3	Additional soil organic matter contribution	Estimate from previous soil building practices		
4	Site specific nitrogen recommendation	Line 1 – line 2 – line 3		
5	Fertilizer PAN estimate and fertilizer application rate	OSU Organic Fertilizer & Cover Crop Calculator		
6	Adjust nitrogen rates based on monitoring	Soil tests and observations of crop performance		

Soil nitrate monitoring during growing season

- Integrates all factors related to plant-available N supply
- If soil nitrate-N is 25 ppm in one foot of soil with typical bulk density (1.3 g/cm³) for silt loam soil
- Then about 90 lb plant-available N present in soil today
- More mineralized tomorrow.

Sweet corn, mid-season soil nitrate-N vs. yield

data point= site-yr for a preplant compost or manure application

David Brown, Mustard Seed Farms 80 ac organic fresh vegetables

"This project helps me evaluate my cover cropping program"

"This year I reduced my fertilizer bill about 60% by working with Nick and Dan and still got great yields"

Scott Latham, Sauvie Island Organics 20 ac organic fresh vegetables, 400 CSA members, 25 restaurants

"We didn't give our cover crops enough N-credit. The Calculator showed us we were getting twice the N we thought. Now, no N is applied to our head lettuce, we get the same yield and save \$275/ac on fertilizer."

"We invest our savings in additional N to our broccoli field and get higher broccoli yields."

Accounting for plant-available nitrogen from cover crops in vegetable production systems

Dan M. Sullivan OSU Extension Soil Scientist & Nick Andrews OSU Small Farms Extension

June 2016, Oahu

SARE

Sustainable Agriculture

Research & Education

Extension Service

Oregon State