

Runoff Photo: T. McCabe (NRCS) Algal Blooms **Turtle Tumors** Photo: Chris Stankis Photo: Flowvella Wasted tele Costs "Blue Baby Syndrome"

Hawaii Cover Crop Calculator to Reduce Fertilizer Requirements

Joshua Silva

Hanai `Ai Vol 45: https://gms.ctahr.hawaii.edu/gs/handler/getmedia.ashx?moid=71124&dt=3&g=12

College of Tropical Agriculture and Human Resources UNIVERSITY OF HAWAI'I AT MĀNOA

Cover Crop Calculator for Plant Available Nitrogen

Cover crops can contribute significant amounts of nitrogen to crop production. This app uses plant-available nitrogen mineralization rates from different areas, nitrogen content and biomass production of cover crop residues to estimate the nitrogen contribution from cover crop residues in Hawaii.

Q Looking for step-by-step instructions? Click here.

Location and Soil Oahu - Poamoho - Oxisols

Select the location and soil order that best matches your area. To find the soil order of your area, check out the SoilWeb Map

Are	ea *		
1			

Fresh Weight * ft2 1.2

Just before termination, sample above ground cover crop biomass from at least 4 locations in your field: i.e. four 1-ft² quadrants

Total N (%) From Lab *	
2	

Collect a 1-2 lb lab-sample from your field sample. Immediately send to an analytical lab that will dry and grind the whole sample before testing for total %N and % dry matter. If you don't have lab results, please refer to the typical Poamoho / Lalamilo results

Total N Requirement *		
180		

Combine all guadrant samples. Tear them up by hand and mix them for 1-2 minutes. Weigh the fresh weight of your field sample

% Dry Matter From Lab *	
23	

If you don't have lab results, please refer to the typical Poamoho / Lalamilo results

K-H Wang et al. 2022 Dr. Koon-Hui Wang's website

http://go.hawaii.edu/bh2

Hawaii Cover Crop Calc link

https://hawaiicovercropcalc.oahurcd.org/

Enter the total N requirement for your crop

COOPERATIVE EXTENSION

Steps

- Soil type (use SoilWeb app if unsure)
- 2. Area collected cover crop
- 3. Fresh weight from Area
- 4. <u>From Laboratory</u> Dry Matter % Total N %

Steps

- Soil type (use SoilWeb app if unsure)
- 2. Area collected cover crop
- 3. Fresh weight from Area
- 4. <u>From Laboratory</u> Dry Matter % Total N %

Agricultural Diagnostic Service Center University of Hawaii, Manoa 1910 East-West Road G. Donald Sherman Laboratory, Room 134 Honolulu, Hawaii 96822

PLANT TISSUE ANALYSES WORKSHEET

JCNO: 23-059043	RECEIVED:	5/23/2023	SAMPLE TYPE		CA	T/COMMON NAME
CLIENT ID:	COMPLETED:	5/26	[X] PLANT TISSUE	REASON:		[] OTHER
CLIENT: Silva, Josh	hua		CROP:	PROBLEM []	COLLECTED:	MATERIAL:
ATTN:			VARIETY:	MONITOR []	COMPLETED:	
ADDRESS:			AGE:	SURVEY []	COLLECTOR:	
CITY:			TISSUE:	EXP. []	SITE:	
PHONE:	TOTAL SAMPLE	1		OTHER:		
			SOIL SUBMITTED: [] YES [x] I	ŇŌ		

	Sample		Anal.				9	6								ug/g			
ITEM	Lab No.	Description	Code	N	С	Ρ	K	Ca	Mg	Na	S	Fe	Mn	Zn	Cu	В	Мо	NO3-N	NO2
1		•	T2, T3	3.45	28.7	1.30	0.54	6.43	0.58	0.35		12,416	380	753	473	43	16		
2																			
3																			
4																			
5																			
6																			
7																			
8																			
9																			
10																			
11																			
10																			

Steps

- Soil type (use SoilWeb app if unsure)
- 2. Area collected cover crop
- 3. Fresh weight from Area
- 4. <u>From Laboratory</u> Dry Matter % Total N %

College of Tropical Agriculture and Human Resources UNIVERSITY OF HAWAI'I AT MĀNOA

Cover Crop Calculator for Plant Available Nitrogen

COOPERATIVE EXTENSION

Cover crops can contribute significant amounts of nitrogen to crop production. This app uses plant-available nitrogen mineralization rates from different areas, nitrogen content and biomass production of cover crop residues to estimate the nitrogen contribution from cover crop residues in Hawaii.

Q Looking for step-by-step instructions? Click here.

Location and Soil Oahu - Poamoho - Oxisols

Select the location and soil order that best matches your area. To find the soil order of your area, check out the SoilWeb Map

Area *		
1		

Fresh Weight *
1.2

Just before termination, sample above ground cover crop biomass from at least 4 locations in your field: i.e. four 1-ft² quadrants

Total N (%) From Lab *	
2	

Collect a 1-2 lb lab-sample from your field sample. Immediately send to an analytical lab that will dry and grind the whole sample before testing for total %N and % dry matter. If you don't have lab results, please refer to the typical Poamoho / Lalamilo results

Total N Requirement *		
180		

lb/acre

ft2

Combine all quadrant samples. Tear them up by hand and mix them for 1-2 minutes. Weigh the fresh weight of your field sample

lb

% Dry Matter From Lab * 23

If you don't have lab results, please refer to the typical Poamoho / Lalamilo results

Steps

- 1. Soil type (use SoilWeb app if unsure)
- 2. Area collected cover crop
- 3. Fresh weight from Area
- 4. From Laboratory Dry Matter % Total N %

Enter the total N requirement for your crop.

	Results
28 Day Estimation	70 Day Estimation
60.28 %	73.58 %
PAN	PAN
87 lb/acre	106 lb/acre
Actual PAN	Actual PAN
63 lb/acre	44 lb/acre
Estimated N Fertilizer for Next Crop	Estimated N Fertilizer for Next Crop

COOPERATIVE EXTENSION

This section provides you with the estimate N fertilizer needed for your crop. Compare your cover crop results with UH ranges (found below in the <u>Reference</u> <u>Data</u> portion of this page). Use caution if your estimates are unusual.

Reference Data

Plant Available N of Typical Cover Crops Used in Lower Elevation in Hawaii (e.g. Poamoho)

Season/tillage	Cover Crop	Fresh Weight (lb/ft ²)	Dry Content (%)	Dry Weight (lb/Acre)	Tissue N (%)	Total N (Ib/A)	PAN (%)	Actual PAN (lb/A)	PAN (%)	Actual PAN (Ib/A)
Winter/Till	Sunn hemp	1.2	23.10%	12074.83	1.66	200.44	55.24	110.72	67.82	135.94
Winter/Till	Cowpea (Blackeye #5)	1.04	13.70%	6206.43	2.87	178.12	63.74	113.54	75.17	133.90
Winter/Till	Lablab	0.9	14.89%	5837.48	2.75	160.53	62.72	100.68	75.22	120.75
Winter/Till	Pigeon pea	0.55	20.47%	4904.20	3.47	170.18	66.14	112.55	81.69	139.02

Results

- 1. Plant Available Nitrogen %
- 2. PAN in lbs/acre
- Estimated N Fertilizer for Next Crop (i.e. amount of fertilizer need to add separate from cover crop)

Reference data from initial calculator experiment

COOPERATIVE EXTENSION | University of Hawai'i at Mānoa College of Tropical Agriculture and Human Resources

Sunn Hemp-Fertilizer Field Trial

COOPERATIVE EXTENSION | UNIVERSITY OF HAWAI'I AT MÂNOA COLLEGE OF TROPICAL AGRICULTURE AND HUMAN RESOURCES

4 treatments •

- 'Joi Choi' August 2020 ;
 'Mei Qing Choi' May 2021
- Fertilized 1x per week
- 12 sq.ft. harvested, triplicate
- Sunn hemp, soil nitrate data

University of Hawai'i at Mānoa College of Tropical Agriculture and Human Resources

2021 (v. Mei Qing) 2020 (v. Joi Choi) **No statistically** significant differences 25.0 Α A (One-Way ANOVA) Α 20.0 A Yield (tons/acre) 0.01 0.51 В В В В 5.0 0.0 FP 3/4 FP 1/2 FP+SH 0N+SH

- Utilized Wang et al. (2017) cover crop calculator
- Biomass from 2ft x 2ft area
- Sunn hemp N of 2.59% from • previous work

Total lbs N/acre (2021)	54 lbs	110 lbs	90 lbs	112 lbs
N- Sunn Hemp (2021)	54 lbs	54 lbs		
N- Fertilizer		56 lbs	90 lbs	112 lbs
Total lbs N/acre (2020)	61 lbs	117 lbs	90 lbs	112 lbs
N- Sunn Hemp (2020)	61 lbs	61 lbs		
N- Fertilizer		56 lbs	90 lbs	112 lbs
	No Fert	50% FP	75% FP	100% FP
	SH	SH		

ICAL AGRICULTURE AND HUMAN RESOURCES

Soil Nitrate Levels- 2020 Trial

*Green shaded area is critical range of 25-50 mg/kg soil suitable for vegetables

Sunn hemp treatments with reduced fertilizer rates yielded similar amounts of pak choi as higher fertilizer rates

- Sunn hemp with 50% reduced fertilizer contributed similar nitrogen amounts as the 100% farmer practice
- Soil nitrate tests indicated nitrate levels for all treatments except for the ON+SH were adequate for cabbages, with nitrate levels between 25-50 mg/kg soil being the critical range (Loo, M. 2018 thesis)
- Costs-Benefits of growing cover crop need to be evaluated for each farm (e.g., irrigation, nematodes, soil health, etc.)

Trial Costs (farmer practices for sunn hemp)

Fertilizer 100% FP:

536 lbs ammonium sulfate per acre per crop x \$0.49/lbs= **\$262.54**

- Seed: 80 lbs seed per acre x \$0.50 per pound= \$40
- Labor (seed): 0.25 hours x 5 workers x \$20 per hour= \$25
- Labor (till): 0.5 hours x 1 worker x \$20 per hour= **\$10**
- Irrigation: 1200 gal per acre x 10 minutes x 40 days x \$0.002 per gallon= **\$960** (room to improve irrigation practices)

Thank you!

Joshua Silva

UH Cooperative Extension

jhsilva@hawaii.edu

Acknowledgments: Dr. J. Deenik, Dr. K. Wang, J. Uyeda, T. Maaz, A. Krenz

This presentation is supported by HDOH project 19-249; WSARE WPDP19-21, WESP 19-01.

COOPERATIVE EXTENSION UNIVERSITY OF HAWAI'I AT MÂNOA COLLEGE OF TROPICAL AGRICULTURE AND HUMAN RESOURCES

