INTERCROPS FOR TURMERIC PRODUCTION

Alina Iliadis, Master's Candidate

University of Hawai'i at Mānoa

College of Tropical Agriculture & Human Resources

Tropical Plant and Soil Sciences Department

Hawai'i's Food System: Challenges

Agricultural Sector

- Limited production space
- High input (e.g. fertilizer) costs
- Restrictions on fertilizer and pesticide use (organic production)

Solution

 System where producers can maximize production and minimize costs in small production spaces

Turmeric Production in Hawai'i

- Industry value growing
 - \$1.2 million in 2018
- Increasing demand (esp. exportation)
- Roma variety outperforms
 - Yield
 - Curcuminoid content

Project Objectives

- Farmer-led, participatory agricultural research project
- To develop an organic turmeric production system in which yields are enhanced in small areas
- Comparing mixed-species intercrops by looking at:
 - Biomass production (as mulch)
 - Weed suppression
 - Indicators of soil health

Cover Crops

Benefits

- Erosion
- Soil structure and fertility
- Compaction
- Weed, disease, pest suppression
- "Green Manure"

• "Three Sisters"

- Grass + legume + broadleaf
- Diverse benefits

Project: Cover Crop Species

Grasses

- Piper Sudangrass
- White Wonder Foxtail Millet

Legumes

- Red Ripper Cowpea
- (Indian & Tropic Sun) Sunn hemp

Broadleaves

- Black Oil Sunflower
- Early Flowering Chia
- Smart Radish

Treatment Composition

Trials 1 & 2

TABLE 1. Cover crop treatment species composition.

TRT	Grass	Legume	Broadleaf
T1	Piper sudangrass	Sunn hemp	Smart radish
T2	White wonder foxtail millet	Red ripper cowpea	Early flowering chia
T3	Piper sudangrass	Sunn hemp	Early flowering chia
T4	Piper sudangrass	Red ripper cowpea	Black oil sunflower
T5	White wonder foxtail millet	Sunn hemp	Smart radish
Control*	N/A	N/A	N/A

^{*}Plastic weed mat used as control treatment.

Project Methods

Experimental Design

- 2 turmeric growing seasons (9-10 months each)
- 2 cover crop cycles (~70 days) in each turmeric season
- Intercropped
- Rotation after turmeric season

Data Collection

- Biomass production (quantity, C:N ratio)
- % cover (weed suppression)
- Nematode community structure
- CO2 respiration

1 Rep x 3 = 18 cover crop alleys

Background: Cover Crop Alleys

Trial 1 (Fall 2021)

Results: Mean % Cover Crop (CC), Weed, & Bare Ground (BG) at 7 Weeks of Growth

Results: Mean % Grass (G), Legume (L), & Broadleaf (B) at 7 Weeks of Growth

Results: Total C, Total N, and C:N ratio

IIIai I.			
TRT	C (kg/ha)	N (kg/ha)	C:N
T1	2233.51 AB	113.02 AB	19.85:1 ABC
T2	1504.79 BC	81.81 B	18.21:1 BC
T3	3893.31 A	153.92 A	24.07:1 AB
T4	3044.03 AB	121.63 AB	25.39:1 A
T5	2082.82 B	147.47 A	14.52:1 C

0.00 C

0.00 C

0.00 D

Trial 1

Control

Trial 2.				
TRT	C (kg/ha)	N (kg/ha)	C:N	
T1	2055.91 A	150.69 A	13.79:1 B	
T2	2201.22 A	94.72 A	23.57:1 A	
T3	2450.94 A	134.55 A	18.24:1 AB	
T4	2488.62 A	116.25 A	22.90:1 A	
T5	2215.21 A	128.09 A	17.40:1 AB	
Control	0.00 B	0.00 B	0.00 C	

T1 & T5: Sunn hemp + radish

CO2 Respiration & Nematodes

CO2 respiration: No significant differences

Nematodes: In progress

Trials 1 & 2: Conclusions

- Sudangrass outperformed millet (Trial 1)
- Radish outperformed chia & sunflower
- Supported benefit of mixed-species
- Legume species can fill in gaps (sunn hemp)
- Ideal C:N ratio
 - Mixtures with sunn hemp + radish

Goals Moving Forward

Management challenges

- Germination issues
 - Irrigation
 - Drilling depth
 - Seed sourcing

Seed supplier changes

- o Trial 2
 - Sunflower (Green Cover Seed -> Johnny Seed)
 - Cowpea (Green Cover Seed -> Koolau)
 - Sunn hemp (Green Cover Seed -> Koolau Seed)

Future Analysis

• Further analysis

- Seasonal variations (temperature data)
- Soil carbon

Acknowledgements

