Update on the Tilapia Rickettsia Like Organism (TRLO) Infecting Tilapia On Oahu.

Clyde S. Tamaru, Ph.D., Jim Brock, DVM, Nathene Lynn Antonio,Allen Riggs, DVM, Kathleen McGovern-Hopkins, RuthEllen Klinger-Bowen, Bradley Fox, Ph.D.

CTAHR/HAAA Workshop Windward Community College November 12, 2011

REGIONAL BIOSECURITY: OPERATIONAL BIOSECURITY AND DIAGNOSTIC SURVEILLANCE – Year 2

- Grant #: 2008-202(b)
- Reporting Period: April 30, 2011 May 1, 2012.
- Funding Level: \$50,000
- Participants:
 - Shemiah Iaea
 - Ilima-Ho Lastimosa
 - Leina'ala Bright
 - Stan Kodama
 - Ron Koza

MOANA

Technologies Inc.

College of Tropical Agriculture and Human Resources

Aquaculture & Livestock Support Services DEPARTMENT OF AGRICULTURE

Rationale for Project

- In 1994, wild and farm-raised populations of tilapia on Oahu
 began to die of an unknown disease.
- Only tilapia were affected and mortalities occurred only during the cooler months (October to April) and were restricted to Oahu.
- Department of Agriculture issues PQ Policy 98-09, Section 150A-8, HRS effective November 5, 1998: Oahu shipments presented to PQB <u>should not</u> be certified for movement to other islands.
- Development and widespread availability of molecular detection techniques provides an opportunity to address the challenges posed by this particular pathogen.

Polymerase Chain Reaction (PCR)

The polymerase chain reaction (PCR) is a technique in molecular biology that amplifies a piece of DNA by generating millions of copies of a particular DNA sequence.

Primer's for TRLO/FLB

FLB16S180f: 5'-GCG-GAT-TAA- AGG-TGG-CCT-TTG-3' (forward primer)

FLB16S465r: 5'-CCT-GCA-AGC-TAT-TAA-CTC-ACA-3' (reverse primer).

Hsieh et.al., 2007. PCR and in situ hybridization for the detection and localization of a new pathogen *Francisella*-like bacterium (FLB) in ornamental cichlids. *Diseases of Aquatic Organisms* **75**, 29-36.

Misumi, et al., 2010 Identification and isolation of *Francisella*-like bacteria (FLB) from tilapia (*Oreochromis mossambicus*) for the first time in Hawaii. Submitted to Fisheries Science.

Validation of PCR Test for TRLO/FLB

Primers: TRLO F/R

Lane 1: Ladder Lane 2: 10-87 Tilapia spleen Lane 3: 10-87 Tilapia spleen Lane 4: no template

> TRLO positive sample from Dr Riggs (ADP case # 10-87)

Primers: CO-I (Fish DNA)

Lane 1: Ladder Lane 2: 10-87 Tilapia spleen Lane 3: 10-87 Tilapia spleen Lane 4: no template

PCR Validation: DNA Sequence

10-87 (+TRLO)

GGATCTACTGCGTTGGATAGCTAGTTGGTGGGGGTAAGGGCCTACCAAGGCTACGATCCATA GCTGATTTGAGAGGGATGATCAGCCACATTGGGGACTGAGACACGGCCCAAACTCCTACGGG AGGCAGCAGTGGGGAATATTGGACAATGGGGGGAAACCCTGATCCAGCAATGCCATGTGTG TGAAGAAGGCTCTAGGGTTGTAAAGCACTTTAGTTGGGGAGGAAAGCCTGTGAGTTATAG CTTGCAGGAA

MTI-10-22C1 (+CO-I fish DNA)

PCR Validation: TRLO = *Francisella* like bacteria (FLB) DNA Sequence

escriptions

jend for links to other resources: 🛄 UniOene 💶 060 🖸 Gene 🧧 Structure 🛄 Map Viewer 📓 Pub Chem BioAssay

Iccession	Description	MARRIEGHT	Total score	Query coverage	<u></u> €xoles	Max.Ment	Lie
7162.1	Francisella noatunensis subsp. orientalis strain Ind04 16S ribosomal RNA g	442	442	97%	54-121	99%	
1.0205	Francisella noatunensis subsp. orientalis strain Ehime-1 16S ribosomal RNA	552	442	97%	5e-121	53%	
22004.1	Francisella sp. LADL 07-285A 16S ribosomal RNA gene, partial sequence	542	442	97%	5e-121	99%	
7812.1	Francisella sp. PQ1104 16S ribosomal RNA gene, partial sequence	542	442	97%	54-121	59%	
\$222.1	Francisella sp. AF-03-27 16S ribosomal RNA gene, partial sequence	442	442	97%	5+-121	99%	
18292.1	Francisella sp. AF-01-28 16S ribosomal RNA gene, partial sequence	442	442	97%	5+-121	55%	
2291.1	Francisella sp. AF-01-27 16S ribosomal RNA gene, partial sequence	552	442	97%	5e-121	53%	
8289.1	Francisella sp. AF-01-6 16S ribosomal RNA gene, partial sequence	542	442	97%	5e-121	99%	
1.895.9	Francisella sp. AF-01-2 16S ribosomal RNA gene, partial sequence	642	442	97%	54-121	53%	
27455.1	Francisella sp. AF-04-405 16S ribosomal RNA gene, partial sequence	542	442	97%	54-121	53%.	
7454.1	Francisella sp. AF-04-15 16S ribosomal RNA gene, partial sequence	##2	442	97%	5e-121	53%	
7452.1	Francisella sp. AF-03-28 16S ribosomal RNA gene, partial sequence	552	442	97%	5e-121	53 W	
6475.1	Tilapia parasite TPT-541 16S ribosomal RNA gene, partial sequence	442	442	97%	5e-121	99%.	
5857.2	Cf. Francisella sp. CYH-2002 16S ribosomal RNA gene, partial sequence; 16	642	442	97%	5+-121	99%	
7177.1	Uncultured Francisella sp. done KST1 16S ribosomal RNA gene, partial sequ	552	442	97%	5e-121	99%	
1.8.201	Francisella sp. Ehime-1 gene for 16S rRNA, partial sequence	5.5.2	442	97%	5+-121	99%	
			A				

Basic Local Alignment Search Tool (BLAST)

Processing a specimen for PCR testing

Tissue distribution during an active infection

Species and tissue distribution of TRLO/FLB during an active infection

Change in tissue distribution of TRLO/FLB during active infection that becomes an asymptomatic population

Tissue distribution of TRLO/FLB in an asymptomatic population

Use of granulomas as an indicator of TRLO/FLB

H&E stained spleen showing multiple granulomas. Scale bar = $50 \mu m$.

From Mauel, et al., 2005. J. Vet. Diag. Invest. 17:601-605.

Distribution of positive cases on Oahu Dec 2010 – Current

- Six cases from cultured stock
- Two cases from wild stocks
- More being tested

Summary and Conclusions

- Capacity for PCR testing of FLB (previously known as TRLO) established, validated and operational
- Several tissues can harbor FLB during an active infection
- Only spleen and lethal sampling protocol useful for identifying asymptomatic carriers
- Some tilapia strains may be resistant to FLB

MAHALO and Thanks for Listening

