Nov. 12, 2011 HAAA Workshop

Use of biotechnology to improve muscle growth in aquaculture species: reliminary results on the use <u>myostatin</u> in the days

Yong Soo Kim, PhD Department of Human Nutrition, Food and Animal Science UH Manoa

DO WE NEED ANIMAL BIOTECHNOLOGY?

How Do We Feed Growing Population?

UN 2004 projection

9 billion by 2050

Need 70% to 100% increase from the current Ag output (UN, 2002)

Options

- 1. Expand agricultural land
- 2. Increase the yield (production efficiency)

concern about the impact of animal agriculture on environment (water quality, global warming etc,)

New Development of Technologies to Improve the Efficiency of Meat Animal Production including fish

Changes in animal production efficiency

6	Changes in the e	efficiency of pig pi	roduction
		1951	1998

# of pigs/sow	6.2	19
Kg feed/gain	8.0	3.2

	Broiler weight	gain			
		1980	1990	2000	2010
-	ADG (g)	27	38	49	59
1 at	Days to 2.2 kg	81.5	57.9	44.9	37.3
77					

Will this change continue? – probably so, but with much less magnitude

Need for new technology: our knowledge on animal growth process (skeletal muscle growth process) in combination with biotechnology can contribute to developing new methods of improving skeletal muscle growth.

Skeletal muscle growth

Positive growth factors Ex. GH, IGF-I & II, steroids etc

Negative growth factors

Ex. Myostatin

Use of myostatin to imporve meat production

- Myostatin?
 - Identified in 1997
 - Potent negative regulator of skeletal muscle growth and development
 - Almost exclusive on skeletal muscle

Effects of In-ovo Injection of Anti-myostatin Antibody on Post-hatch Chicken Growth and Muscle Mass

Y S KIM, N K BOBBILI, K S PAEK AND H J JIN POULTRY SCI. 85:1062-1071 (2006)

Injection: 40 μ g/50 μ l PBS at 3 d after incubation Areas of injection: yolk

Hatchability and number of birds sacrificed at 5 wk after hatch

Parameters	Control	Injection
Number of eggs incubated	40	60
Number of eggs hatched	36	40
% hatchability	90%	67%
Number of birds raised until sacrifice	36	36
Number of male	19	14
Number of female	17	22

Body weight of broiler chickens at different age as affected by *in-ovo* administration of anti-myostatin antibody

Con lı 6.3	njection 45.1	Male	Female
6.3	45.1	<i>4</i> 6 6	
		43.3	44.9
7.7	161.1	153.1	152.8
7.0	488.5	477.7	454.0*
1.5	943.2	942.3	872.8*
9.1 1	252.2	1257.0	1163.6*
4.9 1	445.6	1456.0	1346.3*
8.7 1	854.0 [*]	1844.6	1712.8*
7 1 9 9	2.0 5 0.1 1 1.9 1 3.7 1	2.0 488.5 1.5 943.2 0.1 1252.2 1.9 1445.6 3.7 1854.0*	2.0488.5477.75943.2942.30.11252.21257.00.91445.61456.03.71854.0*1844.6

Data are least square mean (SEM).

*, P<0.05;

Carcass and organ weights of broiler chickens as affected by *in-ovo* administration of anti-myostatin antibody

	Tre	atment	Sex		
	Control	Injection	Male	Female	
35 d body wt, g	1778.7	1853.9 [*]	1844.6	1712.8*	
Carcass wt, g	1313.0	1374.7 [*]	1358.1	1268.0*	
Dressing %	73.5	74.1	73.6	74.1	
Leg wt ¹ , g	357.1	376.9[*]	374.2	340.0*	
Breast muscle wt, g	286.1	301.8+	280.6	291.5*	
Liver wt, g	43.4	45.4	43.4	43.4	
Heart wt, g	8.21	8.75*	8.69	7.74+	
Spleen wt, g	1.49	1.57	1.57	1.40	
Abdominal fat, g	35.9	41.1*	35.3	36.4	

Data are least square mean (SEM).

*, P<0.05; +, P<0.1

¹Includes thigh and leg with bone-in.

Feed consumption and feed efficiency

	Control	Injection
Average weight gain (10-35 day)	1651.6	1798.2
Average feed intake (10-25 day)	2810.4	2600.2
Gain/feed ratio	0.59	0.69

Myostatin inhibition to improve fish growth

Case 1) Use of follistatin, a myostatin inhibitor

Erika et al. Overexpression of follistatin in trout stimulates increased muscling. (2009) Am. J. Physiol.

Transgenic overexpression of protein (follistatin) suppressing myostatin

Case 2) Use of ActRIIB-ECD, a myostatin inhibitor

Carpio et al., Regulation of body mass growth through activin type IIB receptor in teleost fish. General and Comparative Endocrinology 160 (2009) 158–167

• Improve the growth of goldfish, tilapia, and African catfish

Case 3) Use of prodomain, a myostatin inhibitor

Lee et al., 2010. Improving rainbow trout (*Oncorhynchus mykiss*) growth by treatment with a fish (*Paralichthys olivaceus*) myostatin prodomain expressed in soluble forms in E.coli. (2010) Aquaculture 302:270-278.

- production of Recombinant protein (prodomain) suppressing myostatin
- Immersion bath method

Recent trial (2010-2011) with tilapia in Hawaii

- Objective
 - To examine whether the enhanced weight gain induced by treatment with myostatin inhibitors at early stages of fish growth would lead to heavier market weight. This current study was designed to address this question.

- <u>Experimental group allocation</u>: 4 groups (no immersion, buffer only, 0.05 mg/L and 0.2 mg/L)
- <u>Treatment:</u>
 For 4 weeks twice a week
 Weighing by group
- <u>Immersion procedure:</u>
 2 hours in 200 ml solution containing myostatin prodomain

Table 1. Effects of immersion bath with fish (*P. olivaceus*) myostatin prodomain on tilapia growth during the 1st phase before moving into a large tank

Week after bath immersion		Treatment groups ¹			
	No bath	Bath 1 (0 mg/L)	Bath 2 (0.05 mg/L)	Bath 3 (0.2 mg/L)	
0 day Wt, mg	(n=150) 111.9	(n=150) 111.5	(n=150) 112.8	(n=150) 110.1	NS
4 week Wt, mg	(n=138) 224.8	(n=141) 218.0	(n=134) 237.3	(n=145) 231.3	0.07
6 week Wt, mg Length, cm CF ²	(n=133) 459.0 ^a 2.34 ^a 3.53 ^a	(n=138) 473.4 ^ª 2.41 ^b 3.33 ^b	(n=131) 506.7 ^b 2.45 ^b 3.40 ^b	(n=145) 507.8 ^b 2.46 ^b 3.36 ^b	0.002 0.000 0.002
14 week Wt, g Length, cm CF ²	(n=96) 9.29ª ^{,b} 6.38 ^{a,b} 3.42 ^a	(n=101) 9.78 ^b 6.47 ^{a,b} 3.51 ^{a,b}	(n=92) 10.34 ^b 6.50 ^b 3.57 ^b	(n=111) 8.52 ^a 6.21 ^a 3.44 ^a	0.001 0.037 0.010
19 week Wt, g Length, cm CF ²	(n=96) 40.01 ^{ª,b} 10.14 3.63	(n=101) 40.39 ^{a,b} 10.13 3.73	(n=92) 43.04 ^b 10.32 3.70	(n=110) 36.74 ^a 9.90 3.63	0.001 0.208 0.183

Data are least square mean \pm (SEM); SEMs of 0 day wt are from 3 tanks and SEMs of the rest are from individual weights.

¹Mean difference was analyzed using Fisher's pairwise comparisons. Means in the same row not sharing the same superscript differ at p<0.05.

²Condition factor = (body wt/length³) x 100

Treatment showed significant effect on body mass during earlier treatment , but not effect on later stage after treatment

Wk after bath immersion	۱ 	Treatment groups ¹				
mg/L)	No bath	Bath 1 (0 mg/L)	Bath 2 (0.05 mg/L)	Bath 3(0.2		
23 week (07/22/10)	(n=18)	(n=18)	(n=18)	(n=18)		
Wt. g	70.4ª ^{,b}	75.1ª ^{,b}	77.6 ^ª	65.4 ^b	0.01	
Length. cm	12.47 ^{a,b}	12.72 ^a	12.68 ^ª	12.07 ^b	0.021	
CF ¹	3.60	3.63	3.80	3.71	0.148	
32 week (09/17/10)	(n=16)	(n=17)	(n=18)	(n=17)		
Wt, g	153.2	153.5	171.7	173.5	0.230	
Length, cm	16.47	16.46	16.98	17.11	0.202	
CF ¹	3.37	3.43	3.46	3.40	0.872	
42 week (11/30/10)	(n=16)	(n=17)	(n=18)	(n=16)		
Wt.g	264.9	297.2	290.9	311.1	0.117	
Length, cm	19.51	19.94	19.92	20.48	0.153	
CF ¹	3.51	3.71	3.65	3.60	0.342	
45 week (12/20/10)	(n=16)	(n=17)	(n=18)	(n=15)		
Wt, g	271.9	306.7	299.4	319.5	0.137	
Length, cm	20.63	21.29	21.14	21.60	0.236	
CF ¹	3.05	3.17	3.14	3.14	0.691	

Table 2. Effects of immersion bath with fish (*P. olivaceus*) myostatin prodomain on tilapia growthduring the 2nd phase after transfer to a large tank – male and female together (5 females)

Data are least square means \pm (SEM). ¹Mean difference was analyzed using Fisher's pairwise comparisons. Means in the same row not sharing the same superscript differ at p<0.05.

¹Condition factor = (body wt/length³) x 100

No treatment effect was observed on body mass at market size.

Table 3. Ef length, and	fects of immersion bath with fish (<i>P. olivaceus</i>) myostatin prodomain on body weight, d organ weights of male tilapia
Parameter P value	s Treatment groups
	No bath Bath 1, 0 mg/L Bath 2, 0.05 mg/L Bath 3, 0.2 mg/L (n=13) (n=17) (n=16) (n=15)
Wt, g Length, S CF ¹	ummary of tilapia preliminary experiment
Empty % empt	Tilapia growth rate was improved during the prodomain treatment at larval stage.
Liver w % liver •	The improved growth disappeared at later stages of growth after
Heart v % heart Fillet w	treatment, resulting in no treatment effect on body and fillet wt at market size.
² fillet Data ar ¹ Condit 2Empty	imitations in the preliminary experiment
% of or	Species compatibility of prodomain (flat fish prodomain vs tilapia prodomain)
NO 1	Sample size
org.	Effect of stages of treatment

.

Mahalo!

Questions?