Status of Tilapia and Sturgeon Research on the Big Island 2010/2011

Armando García and Kevin Hopkins

Center for Sustainable Aquaculture

A partnership between
UH Sea Grant College Program and
UH-Hilo's Pacific Aquaculture & Coastal Resources Center

Sturgeon Research 1995-2009

- Obtained permits, imported eggs from Russia and Europe
- Preliminary growth trials, demonstrated maturation and economic feasibility
- Conducted trainings

2010 – 2011 Research

Sturgeon Processing & Market Development

- HACCP certified processing
- Effect of size on fillet rates
- Smoked production yield
- Food shows and events (up to 700 people)
- Weekly special at local restaurant

Fish Weight (kg)

Sturgeon – Biological Studies

- Spring 2009 hatch
- Comparative growth
- Siberian vs. Russian
- Freshwater vsbrackishwater (9 ppt) oneyear only
- 19 °C, max density 20 kg/m³

Average Weight (kg)

Age	Water	Siberian	Russian
1 yr	FW	0.9	1.7
2 yr	FW	3.0	7.3
2yr	BW	-	6.6

Future Sturgeon Work

- Maturation
- Spawning
- Caviar yield
- Extension
- Move to

Restricted B

Tilapia permit – O. niloticus

- Currently on Restricted A (research & display only)
- Permit conditions required a comparison of *O. αureus* &
 O. niloticus growth rates in Hawaii
- Imported by Jim Szyper
- Study completed
- A request to move to Restricted B was submitted by ADP

Growth Comparison *O. aureus* & *O. niloticus*

"Effects of prolactin and growth hormone on the branchial expression of ion transporters and Na⁺, K⁺-ATPase isoforms in Nile tilapia (*O. niloticus*)"

Investigators:

Jason Breves, Center for Neuroendocrine Studies, University of Massachusetts Amherst

Andre Seale, HIMB, University of Hawaii at Manoa

Darren Lerner, HIMB, University of Hawaii at Manoa

Kevin Hopkins, Pacific Aquaculture Resource Center, University of Hawaii at Hilo

Tetsuya Hirano, HIMB, University of Hawaii at Manoa

E. Gordon Grau, HIMB, University of Hawaii at Manoa

Funding Support:

2008-35206-18785 2008-35206-18787

IOB05-17769

<u>Goal</u>: We aim to identify the endocrine mechanisms that underlie the divergent osmoregulatory capacities of con-generic tilapias

Mozambique tilapia = estuarine distribution

Nile tilapia = freshwater distribution

Mozambique tilapia (O. mossambicus)

Nile tilapia (Oreochromis niloticus)

The pituitary hormone, <u>prolactin</u>, regulates the expression of ion pumps/transporters in the gill that allow *O. mossambicus* to survive in freshwater (Breves et al., 2010; Tipsmark et al., 2011).

Growth hormone is not required for the expression of ion pumps/transporters that allow *O. mossambicus* to tolerate seawater (Breves et al., 2010).

There are no studies to date that make *direct* links between <u>prolactin</u> and <u>growth hormone</u> and ion pumps/transporters in *O. niloticus*.

- 1) By understanding how the endocrine system has evolved in parallel with salinity tolerance in tilapias, we can identify the mechanisms that underlie euryhalinity in fishes.
- 2) These mechanisms reveal patterns of physiological evolution as well as inform our efforts to improve rearing strategies.

Fenced quarantine area for *O. niloticus*

Controlled environment chambers for physiology & nutrition research

Aquaponics

- International Workshop
 - Summer 2010
- School Systems
- Portable display system

Aquaponics

- Research systems
 - Replicate 4 x 8 ft beds
 - Lo'i
 - Ebb and Flow
 - Flooded
 - Spray

<u>Foreground</u> Simple 300 gal system

Background Lo'i supplied from fish tank

Ebb and Flow System

Future tilapia R&D

- Produce and distribute pure *O. niloticus* fingerlings
- Growth trials with algae used for biofuels and their byproducts

Questions?