# Considerations for Choosing & Maintaining Your Aquaponic System



# **About Hapa Farms**

- Commercial Hatchery
- Kahalu`u, O`ahu
- www.hapafarmshawaii.com/aquaculture
- Custom hybrid tilapia breeding
  - Tested FNO free
  - Color
  - Fast-growing
  - Disease resistant
  - All male





## Kahalu'u Red









# Kahalu'u Black





# Blue Tilapia











# Koilapia









# Purple Tilapia

- All male
- Fast growing





# Aquaponics

- Build systems
- Provide training in building, maintenance, planting, harvesting, breeding







# Aquaponics in Education

 Working with schools to design, implement, and build self-sustaining aquaponic programs











College of Tropical Agriculture and Human Resources  $_{(\mbox{\scriptsize CTAHR})}$ 





# Keep it simple

People think aquaponics is complicated because

Combines a lot of skill sets

-Aquaculture -Hydroponics

-Construction -Mechanical

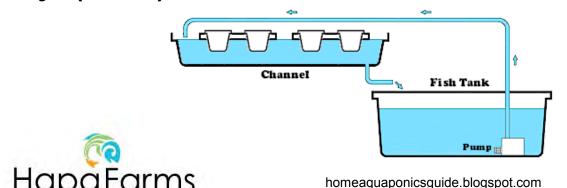
-Horticulture -Plumbing



# **Getting Started**

- Choosing your system:
  - Focus on fish production, plant production, or balance?
  - Type of fish you want to raise
  - Types of plants you want to grow
  - Size of site
  - Budget
- Choosing your site:
  - No overhanging roofs or trees
  - Access to power and potable water
  - Security




# Hydroponic Components

- All modern intensive integrated aquatic agriculture is based off of hydroponic techniques
  - Deep Water Culture
  - Nutrient Film Technique
  - Ebb & Flow



# Deep Water Culture

- Continuous flow of water with plants suspended at surface
- Developed in 1936 for hydroponics
  - Dr William Frederick Gericke (UC Davis)
- Integrated into large scale aquaponics by Dr. James Rakocy (UVI) in 1997

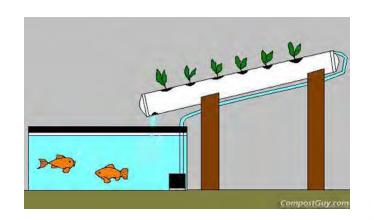


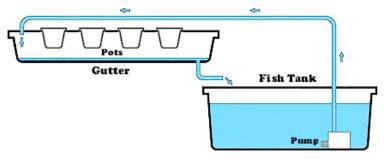
# Deep Water Culture - Pros

 Large volume of water buffers temperature/pH



- Easy harvest
- Potentially profitable model (lettuce)
- Can add guppies, etc in grow bed to diversify aquaculture component





# Deep Water Culture - Cons

- Good raft materials are hard to find as most common (plywood or Styrofoam) are not food safe
- Slower growth than ebb & flow
- Limited types of plants
- Sludge
- Lots of maintenance
- Need an additional filter (mechanical or biological)

# Nutrient Film Technique

- Shallow stream of water circulates through plant roots in channels
- Developed in late 1960s for hydroponics
  - Dr. Allan Cooper
  - Glasshouse Crops Research Institute (U.K.)





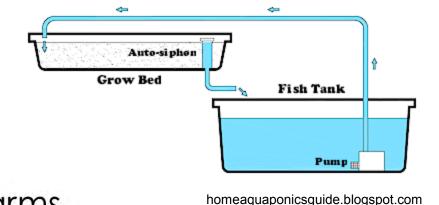


homeaquaponicsguide.blogspot.com

# Nutrient Film Technique - Pros

- Cheapest to build
- Use of vertical space
- One of the most common hydroponic growing system used in Hawaii
- Easy to harvest
- Most common in leafy green hydroponic production




# Nutrient Film Technique - Cons

- Sludge catches in root balls lots of maintenance required
- Need filter
- Food safety sludge on leaves
- Limited types of plants
- Low volume of water so major temperature, pH fluctuations



#### Ebb & Flow

- Water fills grow bed containing solid media then drains
- Developed in 1940s for hydroponics for US Army
  - Robert and Alice Withrow (Purdue)
- Aquaponics transfer
  - Mark McMurtry et al (NCSU)
  - Travis Hughey



#### Ebb & Flow - Pros

- Shown to have highest yield (plant biomass) when compared to other aquaponic techniques – faster growth
- Most versatile
- Acts as biofilter







#### Ebb & Flow - Cons

- Expensive to build (materials)
- Day-to-day maintenance
- Build-up of biological materials



# **Food Safety**

- For backyard farmers, the most at-risk are your family and friends, children and elderly
- Food safety is your personal responsibility



# Some Good Agricultural Practices

- Avoid contamination from feces of warm-blooded animals
  - No overhang over systems
  - No clutter near systems
- Avoid contamination from slugs
  - No plants touching ground (i.e. no path for slug between ground and system)
- Water from system shouldn't touch plants
- Always use potable water to fill system
- Sink designated for hand washing only
- Signs of rules
- Educate everyone in contact with system of food safety rules



# Resources for Food Safety

- CTAHR Good Agricultural Practices website
- http://manoa.hawaii.edu/ctahr/farmfoodsaf ety/
- Food safety for aquaponics:
- http://www.ctahr.hawaii.edu/oc/freepubs/p df/FST-38.pdf



# 3 Components of Food Safety

- Biological
- Chemical
- Physical



# **Building Materials**

- Ensure food safety of any materials that touch the water in your system
  - Grow beds, tanks, liners, pipes, airline, wood, submersible pumps
- General rule: if original purpose was not for food/water storage, probably not foodsafe
- Always check with the FDA about material safety before growing food in a container



### **Plastics**

|       | PETE  | Polyethylene terephthalate - can leach dioxins, carcinogens, hormone-disrupting phthalates with long-term use |
|-------|-------|---------------------------------------------------------------------------------------------------------------|
| 23    | HDPE  | High-density polyethylene – durable in sun, <i>mostly</i> food safe                                           |
| 3     | v     | Vinyl/polyvinyl chloride (PVC) – may not be food safe.<br>Schedule 40 PVC pipe <i>is</i> food safe.           |
| 43    | LDPEA | Low-density polythylene – not known to leach toxic chemicals                                                  |
| £3    | PP    | Polypropylene – not known to leach toxic chemicals                                                            |
| دفع ا | PS    | Polystyrene – <i>some</i> types are food safe                                                                 |
|       | OTHER | Combination of any kind of plastic, may contain BPA                                                           |
| ABS   | 9/ABS | Acrylonitrile butadiene styrene – leaches toxic chemicals                                                     |



# **Building Materials**

- Plastic IBC intermediate bulk containers
  - IBCs are popular for their efficient use of space and their corrosion/chemical resistance
  - Commonly used for shipping/storing:
    - Some foods, water
    - Soaps, glues, detergents, solvents
    - Cosmetic/pharmaceutical additives
    - Corrosive chemicals and hazardous liquids



- IBCs cont'd
  - Companies specialize in repurposing IBC containers so you might not know entire history of IBC
  - Even if materials are food grade, may have held liquids that make it unsafe
  - If held food, might have used a food-grade liner, not necessarily safe
  - Always buy new or request full written records of history

- Cement
  - Sealant must be food grade, many are not
- Liners
  - Look for NSF 61 (safe for potable water)
  - "Fish safe" does not necessarily mean food safe



- Pipes
  - Schedule 40 PVC is food safe
  - ABS pipes (black) are not safe
- Airline
  - Vinyl tubing not always food safe
- Garden hose
  - Not all garden hoses are made of safe materials



- Wood
  - Bare wood should never be touching the water in your system
  - If wood touches the water in your system:
    - Sealant must be food grade
    - Wood should not be treated for termites



# Things you can grow...

...with the right system.



















# Some of the things we've grown

- Banana
- Artichoke
- Basil
- Parsley
- Ginger
- Okra
- Eggplant
- Cucumber
- Tomatoes
- Avocado

- Pineapple
- Papaya
- Blood orange
- Lemon
- Kale
- Mint
- Peppers
- Marigold
- Corn

- `awa
- Mamaki
- Sweet potato
- Sugar cane
- Kalo
- Leafy greens
- Dill

- Mountain apple
- Ginger
- Strawberry
- Okinawan spinach
- Nasturtium
- Garlic chives
- Spearmint
- And more...



# Keep it simple

- Although the concept of aquaponics has been around for thousands of years, commercial aquaponics is less than 10 years old
- It's not necessary to overcomplicate aquaponics
- Selecting the right materials & grow system is easy to do and can substantially increase your success rate