Water Quality and Food Safety in Aquaponic Fish and Vegetable Production Systems

Aquaponics in the Classroom, 2012

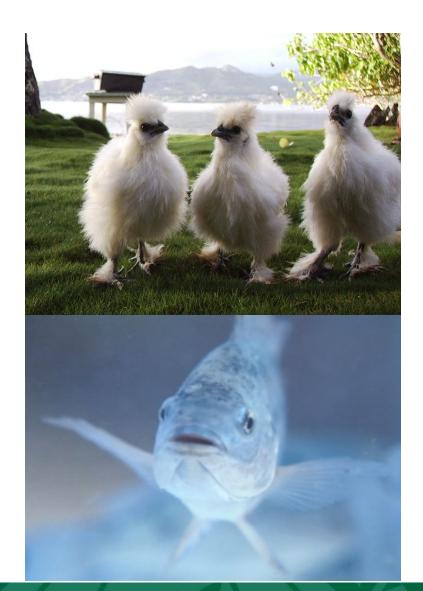
¹Bradley 'Kai' Fox, ¹Clyde S. Tamaru, ²James Hollyer, ³Luisa Castro, ⁴Jorge M. Fonseca, ⁵Michele Jay-Russell, and ⁶Todd Low

¹Department of Molecular Bioscience and Bioengineering, CTAHR
²Department of Plant and Environmental Protection Sciences, CTAHR
³Department of Natural Resources and Environmental Management, CTAHR
University of Hawai'i at Mānoa

⁴College of Agriculture and Life Sciences, University of Arizona ⁵Western Center for Food Safety, University of California, Davis ⁶Aquaculture Development Program, Hawai'i Department of Agriculture

What is Food Safety?

- Preventing foodborne illness
- Recognizing responsibility
 - Food safety is about people
- Chemical, physical, microbiological
- Focus: microbiological



View our certification records: www.Hlfarmsafe.org Audited annually for compliance with Good Agricultural Practices

Foodborne Illness

- Human and economic costs
 - U.S.:~\$77B annually
 - Many factors involved
- Indicator microbes in irrigation water
 - Fecal contamination?
- *E. coli*: warm-blooded origin
 - Fish are cold-blooded

Symbiotic Relationships in an Aquaponic System

• Aquaponies system water: (NH₃)

- Irrigation Fish

Ammonia

Fertilizer

 Uncomposted fish poop (manufer spp.)

(Nitrosoma spp.) purposefully and persistently present

• Water remains below plants in Contact

with roots

Nitrate

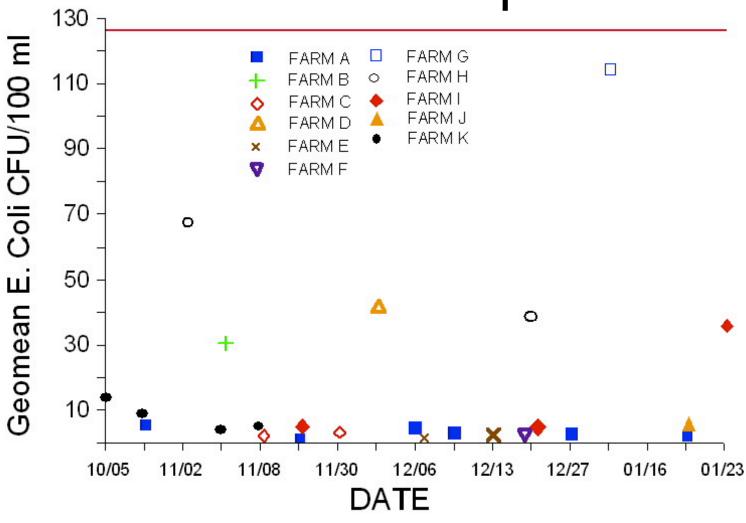
 (NO_3)

(uptake)

Challenges and Opportunities

- Food safety certification
 - Large vendors
- Third party certifiers
 - Audits based on industry and science
 - "Auto-failure"
- Currently: USDA is unwilling to support food safety for aquaponics
 - Lack of scientific information

Current Study


- CTAHR: Farm Food Safety/Aquaponics Extension Programs
 - Funding: HDOA
- Duration: Jan. 2011-Jan. 2012
- Methods
 - Samples collected, chain of custody
 - Samples submitted to accredited laboratory
 - Data analyzed

Results: Aquaponic System Water From Multiple Farms

Results: Produce

- Tested: lettuce, beets, cucumbers, tomatoes, watercress, green onions, pak choi, and blueberries
- Pathogens: E. coli 0157-H7 and Salmonella spp.
- Negative

Results: Inputs

- Tested: Fish food (Silver Cup Trout Chow), bone meal, kelp meal, and Sustane®
- Pathogens: *E. coli* 0157-H7 and *Salmonella spp.*
- Negative

Results: Fish Muscle

- Tested: Aquaculture/ aquaponic system water and raw fillet of culture fish
- Pathogens: Generic E.
 coli (water), E. coli 0157 H7 and Salmonella spp.
 (water and muscle)
- Water: Positive (generic),
 Negative (pathogenic)
- Muscle: Negative

Image retrieved from: http://www.menumagazine.co.uk/archive/oct2011/fish.html

Summary

- Preliminary results
- GAP: use potable water
- Need science-based variance for "autofailure" in aquaponic water

Acknowledgements

- Hawai'i Backyard and Commercial Farmers
- Kathy McGovern-Hopkins
- RuthEllen Klinger-Bowen
- Vanessa Lum
- Lei Yamasaki
- Hawaii Food and Water Testing Laboratory

Aknowledgements

- USDA National Institute of Food and Agriculture, Smith-Lever funds for Cooperative Extension Project ID 12-506, Strengthen aquaculture research and extension at CTAHR.
- Hawaii Department of Agriculture's (HDOA) Agribusiness Development Corporation