- Objectives:
 - Definitions, terminology & introductory material
 - Restoration Ecology within the Ecological Hierarchy
 - Succession & Disturbances
 - Invasive Species
 - Future of forest restoration in Hawaii?

First: questions, take-home points, things you learned, etc. from SER reading assignment

Environmental Values of Restoration

- "...offers hope of recovery from much of the environmental damage inflicted by misuse or mismanagement of Earth's natural resources" (Palmer et al. 2006)
- 1) Retention and enhancement of biodiversity
- 2) Augmentation of habitat (harbors the genetic diversity required for future adaptability)
- 3) Diversification of habitat
- 4) Maintenance of integrity of H₂O cycle
- 5) Stabilization of substrates to prevent erosion & promote topsoil formation
- 6) C sequestration & climate change mitigation
- 7) Preservation of land-based cultural traditions

• Terminology

- Restoration ecology
 - "Science of restoration"
 - Science = Creation & dissemination of new knowledge
 - Requires a priori knowledge of and a strong basis in ecological theory
 - Application of ecological theory to restore ecological systems
 - "Acid test for ecological theory"
 - » Restoration can guide theory as much as theory can guide restoration
 - Basis for Ecological Restoration

- Terminology
 - Ecological restoration
 - "Practice of restoration"
 - Attempt to return system to historical/reference state

 Intentional activity
 - Implication → system transformed from some desirable state <u>and</u> this transformation is not desirable

Value judgment

- Ecological restoration assists or initiates recovery
 - Often requires continued management over time
 - Adaptive ecosystem management helps guarantee the continued well-being of the restored system thereafter

Restoration ecology vs. Ecological restoration

- Ecological restoration
 - Continuum of effort needed to restore a system
 - As simple as removing an unnatural disturbance **or** reinstating a natural disturbance
 - In many cases, ecosystems have been pushed beyond the point of spontaneous recovery
 - Necessitates anything from active outplanting to removal of invasive species to major topographic work
 - Typically involves more than a single treatment or activity in time \rightarrow long-term commitment of resources
 - Active vs. Passive Restoration

• Terminology

- Reference ecosystem

- Model for planning restoration projects
 - Desired outcome
 - Can be an actual site, written description, etc.
 - Ideally is multiple sites and/or descriptions
- A reference ecosystem may represent only one of many possible natural states
 - Ecosystems characterized by high temporal variability
 - » Historic range of variation (HRV)
 - In turn, the restored ecosystem can return to any number of possible states
 - » Alternative stable states

Reference ecosystem: Alternative stable states

 Ecological restoration: Restoration targets a "shifting baseline"

Ecosystem Function

- Reference ecosystem: Source of information
 - Ecological descriptions, species lists, etc.
 - Prior to becoming degraded, damaged or destroyed
 - Remnants of the site to be restored
 - Ecological descriptions & species lists of similar ecosystems in other locales
 - Historical and/or recent photographs
 - Herbarium and museum specimens
 - Historical accounts and oral histories
 - Paleoecological evidence
 - Historic Range of Variability (HRV)

• *Reference ecosystem*: Historic Range of Var.

11

(Keane et al. 2009)

• Terminology

- Conservation biology
 - Save it <u>before</u> it becomes damaged, degraded, or destroyed
 - As with restoration ecology, based on fundamental ecological and evolutionary principles
 - Conservation biology is the scientific discipline that informs biological conservation (the act of conserving)
 - <u>Restoration ecology</u> is to <u>ecological restoration</u> what <u>conservation biology</u> is to <u>biological conservation</u>

- Conservation biology vs. Restoration ecology
 - "Conserving what is left" vs. "Restoring what once was"
 - Target: endangered species vs. habitat structure and function
 - Zoological (fauna) vs. Botanical (flora)
 - Short vs. Long-term objectives
 - Theory & description vs. Replicable practice
 - In reality, they are quite complementary & overlap
 - Widespread habitat loss has made conservation difficult or impossible in many cases → Restoration is necessary

- Human and cultural elements are crucial to viability of restoration projects globally
 - N. Am. focus on restoring "pristine" systems is unviable in many areas of the world
 - Ecological restoration should encourage, and may often be dependent upon, [long-term] participation of local people

- Restoration planning steps (SER)
- 1) Clear rationale as to why restoration is needed
- 2) Ecological description of the site to be restored
- 3) Statement of goals & objectives of the restoration project
- 4) Designation & description of the reference system
- 5) Explanation of how the proposed restoration will integrate with the landscape & surrounding ecosystems
- 6) Plans, schedules & budgets for site prep., installation & post-installation activities; should include a strategy for making mid-course corrections (*adaptive management*)
- 7) Well-developed & explicitly stated performance standards, with monitoring protocols for project evaluation
- 8) Strategies for long-term protection & maintenance 15

•Attributes of restored ecosystems (SER)

- 1) Contains a characteristic assemblage of the species that occur in the reference ecosystem
- 2) Consists of native species to greatest practicable extent
- 3) All functional groups necessary for the continued development and/or stability are represented
- 4) Capable of sustaining reproducing populations
- 5) Functions normally for ecological stage of development
- 6) Suitably integrated into larger ecological matrix
- 7) Potential threats have been eliminated or reduced
- 8) Sufficiently resilient to endure normal periodic stress
- 9) Self-sustaining & has the potential to persist indefinitely within the norms of ecosystem development
 16

- Ecological Foundations
 - "Restoration ecology ideally provides clear concepts, models, methodologies, & tools for practitioners..." (Palmer et al. 2006)

- How can population biology inform restoration ecology / ecological restoration?
 - Population viability analysis
 - How many individuals are needed to start a new population?
 - Is the restored population sustainable over the long term?
 - Metapopulation analysis
 - What value do individual restored patches have for a species' overall persistence on the landscape?
 - Population and ecological genetics
 - How similar is the source population to the population we wish to restore?
 - Should we combine material from multiple source populations?

- How can community ecology inform restoration ecology / ecological restoration?
 - Restoration almost always involves multiple species
 - Populations of co-occurring species
 - In this light, restoration must be informed by community ecology theory:
 - Biotic interactions
 - Habitat and resource dynamics
 - Disturbance regimes
 - Ecological Succession
 - Community ecology provides the opportunity to integrate across these concepts in restoration

- How can ecosystem ecology inform restoration ecology / ecological restoration?
 - Provides organizing framework for ecological restoration
 - Forces consideration of:
 - Spatial and temporal boundaries
 - Connections to adjacent ecosystems
 - Input, cycling & loss of materials and energy
 - Functional connections among organisms, & between biota and the physical environment
 - "Build it and they will come" paradigm
 - Does restoration of abiotic environment lead to restoration of species assemblages and/or function?

- How can ecosystem ecology inform restoration ecology / ecological restoration?
 - Provides conceptual tools to monitor & evaluate
 - Trophic dynamics
 - Productivity & C cycling
 - Biomass pools (live & detrital) & C fluxes
 - Hydrologic cycle
 - Intra-system cycling
 - Decomposition, nutrient cycling, turnover, transfers
 - Disturbance regimes & succession
 - Ecosystem Stability
 - Resistance and resilience

- What is a (natural) disturbance?
 - Relatively discrete event in time that disrupts ecosystem, community and/or population structure, and changes substrate and resource availability, and the physical environment

- Disturbances in a restoration context
 - Natural disturbances
 - Play a large role in shaping ecological communities
 - Eliminated from, introduced to, and/or drastically changed in many ecological systems
 - Restoration often involves restoring natural disturbance regimes and/or eliminating those that are not natural
 - Anthropogenic disturbances
 - Most often detrimental
 - Restoration will typically involve removing disturbance
 - » Fire
 - » Nonnative herbivores

- What is ecological succession?
 - Directional change in species composition, structure, and resource availability over time that is driven by biotic activity and interactions, and changes in the physical environment

24

- Single Equilibrium Endpoint
 - Return to a pre-disturbance state following disturbance
 - Steady directional change to a single endpoint
 - Predictable consequence of species interactions
 - Strong internal regulation via negative feedback mechanisms
 - Restoration can accelerate succession by skipping some points along the continuum
 - e.g., Restoring fire and flood regimes
 - Depends upon level of degradation

- Multiple Equilibrium States
 - Change over time is discontinuous, abrupt and has multiple trajectories
 - System can become so degraded that it is very difficult to restore
 - Ecological thresholds
 - Irreversible shifts in species composition
 - Restoration must identify feedbacks that maintain a degraded state, and eliminate them
 - e.g., invasive species/wildfire cycle in Hawai'i

- Ecological Threshold
 - The point at which a relatively small change in external conditions causes a rapid change in an ecosystem.
 - When an ecological threshold has been passed, the ecosystem typically cannot return to its 'natural state'

Succession and natural disturbances

- Must understand disturbance theory to restore ecological systems
 - » Types, rates, etc.
 - » Natural vs. anthropogenic
- Can restoration be accelerated by manipulating succession and/or disturbances?
 - » Eliminating vs. restoring disturbances
 - » Fast-forwarding succession
- Multiple states, ecological thresholds, and restoration trajectories
 - » The ever-changing nature of ecological systems

Example 1: Grassland/Shrubland Fire Suppression and Woody Encroachment by Pinyon Pine and Juniper

Problem: Reduced fire frequency → change in species composition

Solution: Restore fire regime – pinyon pine and juniper do not survive frequent fire

Example 2: Sand Barren Prairie (Midwest) Fire Suppression and Woody Encroachment by *Salix*

Problem: Reduced fire frequency & grazing \rightarrow change in species composition **Solution:** Restore fire regime Salix resprouts \rightarrow fire alone will not remove woody vegetation Need mechanical or chemical removal

Example 3: Nonnative Tropical Grassland (Hawaii) – Nonnative grass invasion and increased fire frequency

Problem: Invasion, increased fire, ecological threshold crossed **Solution:** Remove fire Remove ignitions Remove invasive species (fuels) •Restore Native Woody Composition

- What is an invasive species?
 - Invasive species (USDA NISIS):
 - (1) nonnative to the ecosystem under consideration, and (2) whose presence causes or is likely to cause economic or environmental harm, or harm to human health
 - Alien, nonnative, exotic, naturalized, weed

- 'Cost' of Invasive Species
 - Economic
 - ->\$120 billion annually in the U.S. (Pimentel et al. 2005)
 - Health
 - Introduced pathogens and diseases (e.g., West Nile virus; Am. chestnut blight; Dutch elm disease; ohia rust; etc.)

- 'Cost' of Invasive Species
 - Biodiversity
 - 2nd most important cause of loss of biodiversity
 - In the U.S., >1/2 of the species listed as threatened or endangered are at risk due to competition with or predation by nonnative species

- 'Cost' of Invasive Species
 - Ecological systems, processes, goods and services
 - Changes in disturbance regimes
 - Alterations of biogeochemical cycles
 - » Nutrient cycling
 - » Hydrology
 - » Carbon cycling

Pre-human Hawaii

Produced by the Hawai'i Natural Heritage Program, June 2003

•Present day Hawaii

- Invasive species impact almost all restoration
 - Present in almost all ecological systems
 - Island ecosystems particularly vulnerable
 - Lots of past focus on biodiversity, more focus now on ecosystem processes
 - Still have poor understanding of ecological impacts
 - Elimination of invaders and restoration of pristine species assemblages likely impossible
 - Need better understanding of ecological impacts of invasion
 - Need better understanding of how to deal with invasion in a restoration context

- Management and prevention approaches
 - Prevention \rightarrow relatively pristine state
 - Management (removal) \rightarrow degraded state

(D'Antonio &

- Management and prevention approaches
 - Prevention management
 - Ecosystems currently providing valuable services and/or intact structure and processes
 - Maintain or increase ecosystem resistance prior to being invaded (e.g., occupying niche space)
 - Maintain ecosystem resilience following disturbances

- Management and prevention approaches
 - Active management
 - Following establishment of invaders and changes in ecosystem properties and processes
 - Top-down control: removal/elimination of invader
 Manual removal, herbicides, biological control
 - *Bottom-up control*: restoration of properties or processes that contribute to stability
 - Manipulation of disturbance regimes
 - Manipulation of soil conditions
 - Direct seeding of desirable species

- Are invasive species always bad?
 - Not all invaders are necessarily "bad" in restoration
 - Many "fade out" naturally over time
 - Management would be a poor expenditure of resources
 - Can be used to facilitate desirable species
 - "Benevolent" invaders
 - Should nonnative species be used in restoration?
 - Provision of ecosystem goods and services
 - Highly degraded systems where desirable species not likely

Restoration Ecology: Future of Hawaii

- •Future of forest restoration in HI (Friday et al. 2015)
 - Use of non-native species
 - Remote Sensing to increase efficacy
 - Improved planting material
 - Direct seeding
 - Improved site preparation/weed control
 - Community involvement

