- Objectives
 - Overview of:
 - Disturbances (natural and anthropogenic)
 - Ecological succession
 - Implications for forest management
 - First: take-home points, things you learned, etc. from reading assignments

Disturbance

- Mix of large infrequent & small frequent events
- A given disturbance is tyically the result of numerous, interconnected factors
- Natural disturbances are not "bad"
- Disturbances characterized by type, size, severity, intensity, frequency, timing, etc.
 - Disturbance Regime

- Disturbance Regime
 - Spatial Component
 - Disturbances are patchy by nature → patchwork of stand ages, types, etc. across the landscape

- Disturbance Regime
 - Temporal Component
 - Mean return interval

100 year flood

30 year fire

• Disturbance - Fire

• Disturbance - Fire

Crown Fire

Surface Fire

• Disturbance - Wind

Disturbance – Diseases, Insects, & Pathogens

Koa Moth

Rapid Ohi'a Death

Other important natural disturbances

Flooding

Earthquakes

Volcanoes

- Natural disturbances are not "bad"
 - Renew ecosystems and diversify landscapes
 - Diverse habitat → high biodiversity
 - Pop./comm./eco. adapted to natural disturbance
 - In many cases, would not exist without them
 - Integral part of ecosystem structure and function that initiates ecological succession
- Humans have modified both disturbance regimes & the actual disturbances
 - Anthropogenic disturbances often threaten ecological integrity

Disturbance – Invasive Species

Psidium cattleianum

• Disturbance – LULCC

 Ecological Succession Plow and abandon Coniferous trees Herbs Shrubs Importance value "Nudum" stage -Time since abandonment (years) (d)

Succession - Models

Relay Floristics Model vs. Initial Floristic Composition Model

- Species occurrence during succession:
 - Largely in response to changes in the physical environment & biotic interactions:
 - Who can get there and establish?
 - Dispersal and colonization
 - Who can survive and reproduce?
 - Competition and other biotic interactions

 Succession – Stable vs. Alternative Steady States

Succession – Primary vs. Secondary

Primary Succession

Secondary Succession

Succession – Primary

Succession – Secondary

Succession – Gap Phase Dynamics

Succession – Facilitation

Succession – Structure

Succession – Ecosystem Processes

Succession – Ecosystem Processes

- Implications of disturbances for management
 - Natural, often desirable, and inevitable
 - Historical frequency, severity, and scale modified
 - Large disturbances largely beyond control
 - Small disturbances easier to control, but often not a good idea to do such, at least over long time periods
 - To manage and conserve forests, we must:
 - Understand ecological role of natural disturbances
 Anticipate their occurrence

***Emulate them, where possible, in management

- Implications of succession for management
 - Ecosystems are characterized by change
 - Physical, chemical and biological
 - Succession does not always follow same pattern
 - Alternative stable states; variability in rate & duration
 - Change in structure change in function
 - Beneficial or detrimental; manage for beneficial
 - Foresters constantly manipulate succession to optimize growth of desired species (ENFD)
 - Requires an understanding of the ecology of the system