Hawaii & Pacific Island Watershed Management

Carl Evensen

University of Hawaii at Manoa
College of Tropical Agriculture & Human Resources

Watershed Management Overview:

- Pacific Island Hydrology/Geology
- Hawaiian Watershed Management
- Land Use Change in Hawaii
- Management / mismanagement of Hawaii's agroecosystems

Pacific Islands Area

Source: NRCS

Geologic Setting

- High Volcanic Islands
- High Limestone Islands
- Low-lying coral Atolls

Pingelap Atoll, FSM

Island Water Resources

(Source: USGS)

Rainfall Distribution in Hawaii

- Orographic rainfall
- Extreme variation over short distances

160

Hawaii

Groundwater in Oahu, Hawaii

NOT TO SCALE

Geohydrology of Guam

EXPLANATION

Limestone Quarry

Limestone Cliffs of Western Tinian, CNMI

Surface Soil

Island Streamflow Characteristics

- Streams are short with steep gradients and small drainage areas
- Few streams are perennial over their entire reaches
- Flow is highly variable

 Low flows from ground-water discharge
 - -High flows from rain storms

Rapid runoff with high peak flows

(Source: USGS)

Baseflow vs. Storm Sample Concentrations, Waikele Stream

Nitrogen, NO2 + NO3 (mg/L)

GIS Model of potential agricultural sites prior to European contact. (Ladefoged et al., 2009)

- Irrigated taro in windward areas and deep valley, mainly on older islands
- <u>Rain-fed agriculture</u> mainly on younger (eastern) islands
- Hypothesized development of irrigated then rainfed systems across substrate age and soil fertility transects.

Changes in Land & Water Use following Western contact

- Land title / private ownership "The Great Mahele" (1850s)
- Sugarcane, pineapple plantations & ranches
- Water diversions / water rights
- Deforestation & subsequent reforestation

Pineapple (~ 1900 →)

Sugarcane (~ 1830 →)

Ranching (~ 1840s →)

Ulupalakua Ranch

Water diversions

Honokohau Valley, Maui, about 1820

Deforestation of Nu'uanu Valley, 1920

Manoa Valley deforestation, 1919

Same view, 1926 (Lyon Arboretum)

Current Land Use Change

Plantation Agriculture

Diversified Agriculture

Suburban Development

Urban Watersheds

Figure 3.3 Hydrographs Before and After Development

Streets in urban areas should be considered as "tributaries" to streams.

Sediment from culvert – Manoa

Drainage near Manoa Elementary School

Algae growth on drainage canal water

Stream near Manoa Elementary School

Urban Soil Erosion

A 10.00

Land Use Districts in Hawaii (acres)

<u>Year</u>	<u>Agricultural</u>	Conservation	<u>Urban</u>	<u>Rural</u>
2006	1,930,000	1,974,000	198,000	10,870
1987	1,968,524	1,967,168	166,507	10,180
1964	2,124,400	1,862,600	117,800	6,700

Hawaii Ag Irrigation Systems

Changes in Hawaii's Agriculture

PLANTATION CROPS

Changes in Hawaii's Agriculture TREE CROPS

Changes in Hawaii's Agriculture DIVERSIFIED CROPS

Changes in Hawaii's Agriculture LIVESTOCK OPERATIONS

Livestock	1987	1996	2009	% decline
Cattle	199,000	174,000	152,000	24
Dairy Cows	11,900	9,400	1,700	86
Pigs	50,000	34,000	15,000	70
Chickens	1,212,000	846,000	373,000	69
Egg Production (million eggs)	223	181	73	67
Milk Production (million lbs.)	156	129	19	88

Summary of Changes in Land Use

- Plantation crops have been replaced to a small extent by diversified crops, forestry and grazing.
- Agricultural chemical use is lower in total quantity but much more diverse.
- Large areas of land are now idle, presenting problems of exotic weed growth, erosion and fire.
- Urban growth and pressure on agricultural land continue to increase.

Watershed-level Management

<u>Ahupua'a</u> -- "radial" land divisions, which recognized interconnections between land and sea.

- Current land ownership and agency jurisdictions often run at cross angles to the mauka-makai orientation of ahupua'a. ie. "concentric circle"
- Agroecosystem management and conservation planning at the watershed level should be encouraged.
- Increase local responsibility (*kuleana*) of communities for sustainable management of land, water, and coastal resources.

Integrated watershed scale management could provide:

- better erosion and flooding control through increased water infiltration and reduced runoff across the landscape
- better control of the spread of diseases, pests, and weeds
- Improved coordination of infrastructure requirements for agriculture and communities

Summary

S Hawaii's agroecosystems have a history of change, which continues today

humans modified ecosystems to the extent of their technology to provide for changing goals/needs)

- § Well managed farms and watersheds can provide ecosystem services, while controlling water pollution, land degradation, pests/diseases, etc. natural resource conservation planning required at individual farm and watershed levels)
- § Farmers and agricultural scientists must be aware of societal and environmental needs and concerns.

MAHALO

Planning for natural resource conservation

104404 WAE SATINGA MELLA COMPANY New Wer Shirt Putower MANIC 44(4 IN Meridin Manual Angen luir W/here.

Agricultural BMPs

Agricultural BMPs are structures, treatments, or management techniques that minimizes the effects of agricultural operations on the natural resources

Sometimes called natural resource conservation practices, BMPs are normally used in combinations to be effective. Single practices seldom address all the natural resource concerns created by an agricultural operation.

Critical Area Planting

Riparian Area Management

- Maintain or restore vegetation as buffer strips between agricultural land and stream
- Restrict access of livestock to streams
- Construct appropriate stream crossings

