- Objectives
 - Introduce some of the more important issues in global change biology
 - Predominate role of humans
 - Importance for management of natural resources

- Humans dominate the Earth
 - This has led to substantial changes in the structure and function of terrestrial, marine, and freshwater ecosystems
 - The "Anthropocene" Epoch

• The "Anthropocene" Era

Vitousek et al. 1997

Human Population Growth

Population growth rate

 Direct and indirect influence of humans on the Earth system

Vitousek et al. 1997

Land transformations (39-50% of Earth's surface)
– Row crop agriculture and urbanization (10-15%)

- Land transformations (39-50% of Earth's surface)
 - Urbanization
 - Suburbs of Dallas, TX

2010

- Land transformations (39-50% of Earth's surface)
 - Mining
 - Boone County, WV

1996

- Land transformations (39-50% of Earth's surface)
 - Conversion to pastureland (6-8%)
 - Grazing by domestic animals (???%)
 - Extraction of wood (???%)

• Alteration of marine ecosystems

At the Breaking Point

The condition of the world's fisheries has declined drastically because of overfishing.

Vitousek et al. 1997

- Alteration of biogeochemical cycles Carbon
 - Increased atmospheric CO₂ concentrations by ~45% since the industrial revolution

Alteration of biogeochemical cycles - Carbon

• Terrestrial C metabolism: The "breathing" of Earth

• World-wide CO₂ emissions

• World-wide CO₂ emissions

• Human CO2 "footprint" in the U.S.

The Vulcan Project

• Effect of land use change on ecosystem C stock

• Alteration of biogeochemical cycles - Nitrogen

• Alteration of biogeochemical cycles - Nitrogen

N fixation

– Natural

VS.

 \leftarrow Anthropogenic \rightarrow

N deposition

Alteration of biogeochemical cycles - Nitrogen

Bobbink et al. (2010)

• Alteration of biogeochemical cycles - Water

• Alteration of biogeochemical cycles - Water

Amount of water embodied in (required to produce) a slice of bread (liters)	40
An apple	70
A hamburger	00
44.19	
Amount embodied in a glass of wine	.1
A glass of beer	75
A cup of coffee	40
A glass of milk	00
«»	
Amount embodied in a sheet of A4 paper (210 x 297 mm)	10
In a cotton shirt	00
In an Indian-made Tata Motors Nano automobile	00
In a U.Smade Chevrolet Malibu	00
46.95	
Amount required to produce one kilowatthour of electricity	71
41 IN	
Typical consumption from one 10-minute shower	95
From a year's worth of daily 10-minute showers	75

World Watch (April 2008)

41 >>

Daily human water consumption requirement (from food and beverages)	
Yearly human water consumption requirement	

• Alteration of biodiversity - Extinctions

from left to right Kauai O'O Extinct, Kauai Akialoa Extinct, O'u Extinct, Kauai Nukupu'u Extinct, Puaiohi less then 200 remain, Kamao Extinct

Alteration of biodiversity – Additions (invasions)

Hawaii

Psidium cattleianum

Pennisetum setaceum

Puccinia rust

- A human dominated planet (Vitousek et al. 1997)
 - "The global consequences of human activity are not something to face in the future...they are with us now."

- "The rates, scales, kinds, and combinations of changes occurring now are fundamentally different from those at any other time in history..."
- "In a very real sense, the world is in our hands and how we handle it will determine its composition and dynamics, and our fate."

- A human dominated planet What can we do?
 - 1.Reduce the rate of alterations to the Earth system
 - Slow human population growth & consumption
 - Use resources as efficiently as possible (sustainability)
 - **2.Gain a better understanding** of the Earth system and how it is impacted by global change
 - Rigorous scientific study
 - Include human dimensions (social, economic and cultural)
 - **3.Be responsible** for managing Earth now & for future generations
 - Active management of populations, species, and ecosystems for goods and services

- Is the global climate changing and, if so, is it the result of human activities?
 - Only need to believe 2 things
 - 1) Atmospheric constituents (i.e., greenhouse gases) trap outgoing longwave radiation, thereby warming the atmosphere
 - 2) Human activities are increasing the concentrations of greenhouse gases in the atmosphere
 - There is no argument about # 1 or 2
 - The questions we should be asking are:
 - How much will the climate change?
 - What will the impacts of that change be for the goods and services that ecosystems provide humankind?

• Greenhouse Effect

Figure 4.1 Disposition of solar energy reaching Earth's atmosphere.

Mauna Loa Observatory

- How do we know that climate is changing now, and that it is a result of human activities?
- Ice cores
 - -Strong correlation between greenhouse gas conc. and temp.
 - -Higher conc. of CO_2 , CH₄, and N₂O than anytime in the past 650,000 years
 - Biosphere has taken up ~50% of CO₂ emissions

GLACIAL-INTERGLACIAL ICE CORE DATA

IPCC 2007 **30**

- Climate has always been variable in the past, so why should we care if it is changing now?
 - Rate of change far exceeds anytime in the past
 - Prior to 1750, CO₂ increased by 20 ppm over 8,000 years
 - Since 1750, CO₂ has increased by >100 ppm

- Major greenhouse gases occur naturally, but have increased in past 250 yrs from human activities
 - $-CO_2$
 - fossil fuels burning (2/3); land use/land cover change (1/3)
 - $-CH_4$
 - Ruminant domestication (37%); reservoirs (>20%); landfills & waste treatment (20%); biomass burning (12%); ag.; fossil fuels
 - $-N_2O$
 - animal waste products (~65%); industry and fossil fuels (~20%); fertilizers & agriculture
 - Other greenhouse gases are entirely due to human activities
 - CFCs, HCFCs, etc. from industrial activities

• Concentration vs. Warming potential

Industrial Designation			Radiative	Global Warming Potential for Given Time Horizon					
or Common Name (years)	Chemical Formula	Lifetime (years)	Efficiency (W m ⁻² ppb ⁻¹⁾	SAR‡ (100-yr)	20-yr	100-yr	500-yr		
Carbon dioxide	CO ₂	See below ^a	^b 1.4x10 ^{−5}	1	1	1	1		
Methanec	CH ₄	12°	3.7x10-4	21	72	25	7.6		
Nitrous oxide	N ₂ O	114	3.03x10-3	310	289	298	153		
Substances controlled by the Montreal Protocol									
CFC-11	CCl ₃ F	45	0.25	3,800	6,730	4,750	1,620		
CFC-12	CCl ₂ F ₂	100	0.32	8,100	11,000	10,900	5,200		
CFC-13	CCIF ₃	640	0.25		10,800	14,400	16,400		
CFC-113	CCl ₂ FCCIF ₂	85	0.3	4,800	6,540	6,130	2,700		
CFC-114	CCIF ₂ CCIF ₂	300	0.31		8,040	10,000	8,730		
CFC-115	CCIF ₂ CF ₃	1,700	0.18		5,310	7,370	9,990		
Halon-1301	CBrF ₃	65	0.32	5,400	8,480	7,140	2,760		
Halon-1211	CBrCIF ₂	16	0.3		4,750	1,890	575		
Halon-2402	CBrF ₂ CBrF ₂	20	0.33		3,680	1,640	503		
Carbon tetrachloride	CCl ₄	26	0.13	1,400	2,700	1,400	435		
Methyl bromide	CH ₃ Br	0.7	0.01		17	5	1		
Methyl chloroform	CH ₃ CCl ₃	5	0.06		506	146	45		
HCFC-22	CHCIF ₂	12	0.2	1,500	5,160	1,810	549		
HCFC-123	CHCl ₂ CF ₃	1.3	0.14	90	273	77	24		
HCFC-124	CHCIFCF3	5.8	0.22	470	2,070	609	185		
HCFC-141b	CH ₃ CCl ₂ F	9.3	0.14		2,250	725	220		
HCFC-142b	CH ₃ CCIF ₂	17.9	0.2	1,800	5,490	2,310	705		
HCFC-225ca	CHCl ₂ CF ₂ CF ₃	1.9	0.2		429	122	37		
HCFC-225cb	CHCIFCF2CCIF2	5.8	0.32		2,030	595	181		

33

Table TS.6. Projected global average surface warming and sea level rise at the end of the 21st century. {10.5, 10.6, Table 10.7}

	Temperatu (°C at 2090-2099 rela	re Change ative to 1980-1999) ª	Sea Level Rise (m at 2090-2099 relative to 1980-1999)			
Case	Best estimate	<i>Likely</i> range	Model-based range excluding future rapid dynamical changes in ice flow			
Constant Year 2000 concentrations ^b	0.6	0.3 – 0.9	NA			
B1 scenario	1.8	1.1 – 2.9	0.18 – 0.38			
A1T scenario	2.4	1.4 – 3.8	0.20 – 0.45			
B2 scenario	2.4	1.4 – 3.8	0.20 - 0.43			
A1B scenario	2.8	1.7 – 4.4	0.21 – 0.48			
A2 scenario	3.4	2.0 - 5.4	0.23 – 0.51			
A1FI scenario	4.0	2.4 - 6.4	0.26 - 0.59			

- Projected changes in CO₂, temperature, and sea level
 - low (B1), medium (A1B), and high (A2) increases in CO₂

GLOBAL MEAN RADIATIVE FORCINGS

36

- Projected temperature change
 - Uneven distribution of temperature increase across the globe
- What's the big deal about a 2-5°C increase?
 - Difference between glacial & interglacial is ~5-8°C

• Projected change in precipitation (mm day⁻¹)

Sea ice extent and sea level rise

IPCC 2007

- What can be done, or are we already doomed?
 - Cut back on consumption
 - US is ~5% of world's population and uses ~25% of resources
 - China? India?
 - Stop burning fossil fuels (CO₂ & CH₄)
 - Develop alternative energy sources (solar, wind, wave, bioenergy)
 - Reduce land use & land cover change ($CO_2 \& CH_4$)
 - Rehabilitation of degraded lands; stop deforestation for agriculture
 - Reduce unnecessary biomass burning (CH_4 , NO_x)
 - Reduce/eliminate fertilizer use and air pollution (N_2O , NO_x)
 - Reduce/eliminate use of CFCs & HCFCs
 - ***Become land stewards instead of land manipulators***