Coastal Ecology and Management: Seagrasses and Coral Reefs

Temperate - Boreal Regions

- 4 genera
- ~ 28 species

Tropical -Subtropical Region

- 7 genera
- ~ 30+ species

Eurythermal

- Ruppia
- ~ 2-10 spp.

- Blades –
 Photosynthesis,
 Nutrient uptake
- **Short shoot** = stem
- Rhizomes Anchoring, Propagation, Nutrient absorption, Gas exchange
- Roots Nutrient uptake, Anchoring (binding), Gas exchange

Fig. 5. Vertical velocity (U) profiles (thick solid lines) in seagrass canopies exposed to 5 cm s⁻¹(A), 10 cm s⁻¹ (B) and 20 cm s⁻¹ (C). Z, distance above the sediment interface. Note that, as velocity increases, the angle of bending of the canopy increases and the canopy height (dashed horizontal line) decreases. Based on a flume experiment using a short (16 cm) and dense (1,000 shoots m⁻²) Zostera marina canopy (Gambi et al. 1990).

Halodule

Zostera

(K. Peyton 2007)

Posidonia

Halophila

Enhalus

Phyllospadix

SGB 6

Endemic in Hawaii

Halophila decipiens Halophila hawaiiana

Invasive in Hawaii Ruppia maritima

(K. Peyton 2007)

SGB 9

Figure 19. A meadow of the endemic seagrass Halophila hawaiiana growing along the south shore of Moloka'i. Leaves of Halophila are usually less than 5 cm (2 in) in height, but meadows can cover several hundred square meters.

(Field et al. 2008)

Endemics: S. shore of Moloka'i

Figure 20. The common growth form of the endemic Hawaiian seagrass *Halophila hawaiiana* (note the oval or paddle-shaped leaves) growing on the shallow reef flats of south Moloka'i.

Figure 21. The more elongated and linear-shaped leaves of a different growth form of *Halophila hawaiiana* can also be found growing on the shallow reef flats of Moloka'i.

Grazers – Sea Cows

A manatee (*Trichechus manatus*), feixe-boi in Portugese, over a *Halodule wrightii* bed in Recife, Brazil.

(Green & Short 2003)

Dugong feeding on *Halophila ovalis*, Vanuatu, western Pacific islands.

Grazers – Turtles and Sea Horses

A sea horse, Hippocampus whitei, amongst Zostera capricorni in Sydney Harbour, Australia.

Green turtle (*Chelonia mydas*) resting on a bed of *Thalassodendron ciliatum* in Watamu Bay, Kenya

(Green & Short 2003)

Carnivores: Leafy Sea Dragon (*Phycodurus eques*) found in southern & western Australia

Seagrasses: Ecosystem services

(Orth et al. 2006)

Seagrasses: Anthropogenic stressors

- Sedimentation
- Sewage discharge
- Non-point pollution
- Algal epiphytes

Seagrasses: Anthropogenic stressors

Invasive Species

Caulerpa taxifolia - cultured strain

Mediterranean Sea; California; Australia

Posidonia oceanica - endemic seagrass

Aquarium dumping

Seagrasses: Anthropogenic stressors

Displacement and Smothering

(K. Peyton 2007)

National Geographic – April 2013

When
push
comes
to shove

The Florida manatee is thriving in Kings Bay, and so is tourism.

Therein lies the problem.

(Spalding et al. 2001)

Global Distribution – Coral Reefs

What characteristics do coral reefs require?

_

_

_

(Mitsch & Gosselink 2000)

Class Anthozoa

Simple body structure, tentacles, mouth, digestive cavity

Coral polyps

Animal characteristics

Coral polyps

Animal characteristics

Plant characteristics

Zooxanthellae

Fringing reef: found growing as fringe attached to land mass

Fringing reef: found growing as fringe attached to land mass

Barrier reef: occur out to sea creating a shallow lagoon b/w reef & land

Fringing reef: found growing as fringe attached to land mass

Barrier reef: occur @ some dist. out to sea creating a shallow lagoon b/w reef & land

Atoll: isolated structure surrounded by deep H₂O that forms a ring of coral w/ central lagoon

Age

Figure 6.3 Diagrammatic section of a typical atoll showing the major subdivisions of the reef complex.

Reef Functional Zones

Coral Reefs: Community Dynamics

Damselfish

Family: Pomacentridae

Herbivorous reef fish

Fiercely protective

Redlip parrotfish, pālukaluka, Scarus rubroviolaceus

Sexually dimorphic

Surgeonfish Acanthuridae

Achilles tang, pāku'iku'i

Acanthurus achilles

Active, aggressive seaweed grazer

Coral Reefs: Community Dynamics butterflyfish, lauhau

Chaetodon quadrimaculatus

Direct coral grazers

Spotted puffer, 'o'opu hue Arothron meleagris

Produces deadly toxin

Triggerfish Balistidae

Lagoon triggerfish

Reef triggerfish, humuhumunukunukuāpua'ā, Rhinecanthus rectangulus

Spectacled Parrotfish Chlorurus perspicillatus

Apex Predators

(Waddell 2005)

*Absent or reduced numbers and biomass in many systems, but still present in NWHI

Coral Reefs: Stressors

(Maragos & Gulko 2002)

Coral Reefs: Stressors

Natural vs human-modified coral reef food web

Before Fishing

After Fishing

Bold font = abundant

Normal font = rare

(Jackson et al. 2001)

Land-based threats to coral reefs

Sedimentation Hawaii Kai

Eutrophication
Results in algal blooms

Other threats to Coral Reefs

Coral Mining, Shell Industry

Destructive Fishing Practices

E.g., Indonesia – explosives and cyanide to stun fish

Other threats to Coral Reefs

Acidification

Makes biogenic CaCO₃ creation more difficult.

Coral Reefs: Stressors

CaCO₃

$$Ca^{2+} + CO_3^{2-} \leftarrow \rightarrow CaCO_3$$

Other threats to Coral Reefs

Acidification

Makes biogenic CaCO₃ creation more difficult.

Bleaching

Extremes in temperature, salinity, UV cause expulsion of zooxanthellae – short duration or low intensity, can recover; long duration or high intensity causes death.

Coral Reefs: Stressors

Instability within mutualism:
High temperature or low salinity,
polyps expel zooxanthellae.

Without the algae, cannot form large reefs and corals bleach and die.

Various
Human
Impacts
on Coral
Reefs

(Gulko 1998)

State of the Oceans

http://www.ted.com/talks/jeremy_jackson.html

Dr. Jeremy Jackson, Scripps Institution of Oceanography A leader in the study of the ecology and evolution of marine organisms, Jeremy Jackson is known for his deep understanding of geological time