

Extension Service

CROPTIME

ONLINE VEGETABLE SCHEDULING

HTTP://SMALLFARMS.OREGONSTATE.EDU/CROPTIME

Nick Andrews Heidi Noordijk Ed Peachey Dan Sullivan Len Coop Jim Myers Aaron Heinrich Heather Stoven

René A. F. de Réaumur (1683-1757)

- Used daily mean temperatures to predict plant development in mid 18th Century
- The importance of threshold temperatures was recognized by mid-20th Century (i.e. Arnold, 1959)
- Threshold temperatures are low or high temperatures that limit development and growth

$$\frac{Tmax + Tmin}{2} - Tbase = degree \ days$$

Simple average degree-days

<u>Tmax + Tmin</u> 2

If high = $68^{\circ}F \& low = 45^{\circ}F \&$ Base temp for sweet corn = $50^{\circ}F$, then

(68+45) / 2 = 56.5

56.5 - 50 = 6.5 degree-days On a summer day >30 DDs can pass

Degree-days and sine curves

http://www.ipm.ucdavis.edu/WEATHER/ddconcepts.html

Croptime components

- Vegetable degree-day models to predict harvest maturity of specific varieties
- Weed degree-day models to predict first germinable seed
- Nitrogen information explaining how temperature influences N release
- Croptime website to host this information so that models are accessible to growers as decision-tools

Using degree-days David Brown, Mustard Seed Farm

"I have used degree days for over 20 years to schedule successive plantings of vegetables.

I have made some educated guesses... (but) having more information, based on some research, would be helpful in refining my schedules and maybe even using the information for more crops."

Frank Morton, Wild Garden Seed

"The 'days to maturity' varietal information available in most seed catalogs is not useful to farmers, except in a vague relative sense.

If seed breeders and catalogs could provide degree-day information for their vegetable varieties, farmers would be able to more accurately model their crop delivery schedules in years of unusual weather patterns or extremes."

Photo by Shawn Linehan

Fruiting Crops

- Snap beans (3)
- Tomato (5)
- Summer squash (5)
- Cucumber (4)
- Sweet pepper (7)
- Winter squash (4)
- Sweet corn (6)

Root Crops

- Carrot (3)
- Parsnip (4)

Brassicas

- Broccoli (4)
- Cabbage (6)
- Cauliflower (3)
- Kale (2)

Leafy Crops

• Lettuce (4)

Growth stages and descriptions

Monitoring

- Once per week
 - 2013
 - 2014
 - 2015
- Record growth stage
- Photos

Growth Stage

Direct Seed

Germination

Transplant

Number of true

leaves

Cupping

Head initiation

Head development

Growth stage guide

CONTENTS PLEASE READ		
PLEASE READ. 2 AMARANTHACEAE 5 Spinach. 5 APIACEAE 7 Carrot 7 ASTERACEAE 11 Head Lettuce 11 BRASSICACEAE 13 Broccoli 13 Cauliflower 15 Cabbage 17 Kale 19 CUCURBITACEAE 21 Summer Squash 23 Winter Squash 25 FABACEAE 27 Snap beans 27 POACEAE 29 Sweet corn 29 SOLANACEAE 31 Tomato 33	CONTENTS	
AMARANTHACEAE 5 Spinach 5 APIACEAE 7 Carrot 7 ASTERACEAE 11 Head Lettuce 11 BRASSICACEAE 13 Broccoli 13 Cauliflower 15 Cabbage 17 Kale 19 CUCURBITACEAE 21 Summer Squash 23 Winter Squash 25 FABACEAE 27 Snap beans 27 POACEAE 29 Sweet corn 29 SOLANACEAE 31 Tomato 33	PLEASE READ	2
Spinach .5 APIACEAE .7 Carrot .7 ASTERACEAE .11 Head Lettuce .11 BRASSICACEAE .13 Broccoli .13 Cauliflower .15 Cabbage .17 Kale .19 CUCURBITACEAE .21 Summer Squash .23 Winter Squash .25 FABACEAE .27 Snap beans .27 POACEAE .29 Sweet corn .29 SULANACEAE .31 Tomato .33	AMARANTHACEAE	
APIACEAE 7 Carrot 7 ASTERACEAE 11 Head Lettuce 11 BRASSICACEAE 13 Broccoli 13 Cauliflower 15 Cabbage 17 Kale 19 CUCURBITACEAE 21 Summer Squash 23 Winter Squash 25 FABACEAE 27 Snap beans 27 POACEAE 29 Sweet corn 29 Sourd corn 29 Sourd corn 31 Tomato 33	Spinach	
Carrot 7 ASTERACEAE 11 Head Lettuce 11 BRASSICACEAE 13 Broccoli 13 Cauliflower 15 Cabbage 17 Kale 19 CUCURBITACEAE 21 Cucumber 21 Summer Squash 23 Winter Squash 25 FABACEAE 27 Snap beans 27 POACEAE 29 Sweet corn 29 SOLANACEAE 31 Tomato 33	APIACEAE	
ASTERACEAE 11 Head Lettuce 11 BRASSICACEAE 13 Broccoli 13 Cauliflower 15 Cabbage 17 Kale 19 CUCURBITACEAE 21 Cucumber 21 Summer Squash 23 Winter Squash 25 FABACEAE 27 Snap beans 27 POACEAE 29 Sweet corn 29 SOLANACEAE 31 Tomato 33	Carrot	
Head Lettuce 11 BRASSICACEAE 13 Broccoli 13 Cauliflower 15 Cabbage 17 Kale 19 CUCURBITACEAE 21 Cucumber 21 Summer Squash 23 Winter Squash 25 FABACEAE 27 Snap beans 27 POACEAE 29 Sweet corn 29 SOLANACEAE 31 Pepper 31 Tomato 33	ASTERACEAE	
BRASSICACEAE 13 Broccoli 13 Cauliflower 15 Cabbage 17 Kale 19 CUCURBITACEAE 21 Cucumber 21 Summer Squash 23 Winter Squash 25 FABACEAE 27 Snap beans 27 POACEAE 29 Sweet corn 29 SOLANACEAE 31 Pepper 31 Tomato 33	Head Lettuce	
Broccoli 13 Cauliflower 15 Cabbage 17 Kale 19 CUCURBITACEAE 21 Cucumber 21 Summer Squash 23 Winter Squash 25 FABACEAE 27 Snap beans 27 POACEAE 29 Sweet corn 29 SOLANACEAE 31 Pepper 31 Tomato 33	BRASSICACEAE	
Cauliflower 15 Cabbage 17 Kale 19 CUCURBITACEAE 21 Cucumber 21 Summer Squash 23 Winter Squash 25 FABACEAE 27 Snap beans 27 POACEAE 29 Sweet corn 29 SOLANACEAE 31 Pepper 31 Tomato 33	Broccoli	
Cabbage 17 Kale 19 CUCURBITACEAE 21 Cucumber 21 Summer Squash 23 Winter Squash 25 FABACEAE 27 Snap beans 27 POACEAE 29 Sweet corn 29 SOLANACEAE 31 Pepper 31 Tomato 33	Cauliflower	
Kale 19 CUCURBITACEAE 21 Cucumber 21 Summer Squash 23 Winter Squash 23 Winter Squash 25 FABACEAE 27 Snap beans 27 POACEAE 29 Sweet corn 29 SOLANACEAE 31 Pepper 31 Tomato 33	Cabbage	
CUCURBITACEAE21Cucumber21Summer Squash23Winter Squash25FABACEAE27Snap beans27POACEAE29Sweet corn29SOLANACEAE31Pepper31Tomato33	Kale	
Cucumber 21 Summer Squash 23 Winter Squash 25 FABACEAE 27 Snap beans 27 POACEAE 29 Sweet corn 29 SOLANACEAE 31 Pepper 31 Tomato 33	CUCURBITACEAE	
Summer Squash 23 Winter Squash 25 FABACEAE 27 Snap beans 27 POACEAE 29 Sweet corn 29 SOLANACEAE 31 Pepper 31 Tomato 33	Cucumber	
Winter Squash 25 FABACEAE 27 Snap beans 27 POACEAE 29 Sweet corn 29 SOLANACEAE 31 Pepper 31 Tomato 33	Summer Squash	
FABACEAE 27 Snap beans 27 POACEAE 29 Sweet corn 29 SOLANACEAE 31 Pepper 31 Tomato 33	Winter Squash	
Snap beans 27 POACEAE 29 Sweet corn 29 SOLANACEAE 31 Pepper 31 Tomato 33	FABACEAE	
POACEAE 29 Sweet corn 29 SOLANACEAE 31 Pepper 31 Tomato 33	Snap beans	
Sweet corn 29 SOLANACEAE 31 Pepper 31 Tomato 33	POACEAE	
SOLANACEAE	Sweet corn	
Pepper	SOLANACEAE	
Tomato	Pepper	
	Tomato	

Growth stage guide

CUCURBITACEAE

CUCUMBER

1

+

Growth Stage	BBCH #	Description
Direct Seed	000	Note the seeding date if direct seeded in the field.
Germination	001 & 009	001 = seed can imbibe water due to soil moisture, irrigation or priming (this may be the same as direct seed date), 009 = cotyledons emerge from soil, estimate percent of crop emerged.
Transplant	101-103	Record the transplanting date and the number of fully unfolded true leaves at transplanting if appropriate. 101= 1 true leaf unfolded, 103 = 3 true leaves unfolded.
Number of true leaves	100-109	Count number of fully unfolded true leaves on main stem. 100 = cotyledons completely unfolded, 101 = first true leaf unfolded, 105 = 5 true leaves unfolded.
Flower bud development	501-509	Female flower buds are developing (elongated ovaries are visible on female flower buds). There are no open flowers. 501 = 1" female flower bud visible, 505 = 5" female flower buds visible.
Flowering	601-609	Female flowers open. 601 = 1 st open female flower, 605 = 5 th open female flower.
Fruit development	701-719	Measure developing fruit length when they start to expand. 702 = 2", 705 = 5" long fruit. Note any early fruit culling.
First harvest	745-747	Record the date and largest fruit length at first harvest. First harvest varies by variety. 745 = harvest with 5" fruit, 747 = harvest with 7" fruit.
Ongoing harvest	760	Harvest continues after first harvest and fruit length is no longer measured.
End of harvest	901	901 = Plants decline and fruit is no longer harvested.

CUCUMBER

Image 1. Germination	Image 2. One True Leaf
Image 3. Fruit Bud Development	Image 4. Fruit Development
Image 5. Female Flower	Image 6. Male Flower
7. Fruit Expansion	Image 8. Harvest

Growth stages - Broccoli

Diversity in Horticultural Systems

Priority crops ID'd by growers

Fruiting Crops (34)

- Snap beans (3)
- Tomato (5)
- Summer squash (5)
- Cucumber (4)
- Sweet pepper (7)
- Winter squash (4)
- Sweet corn (6)

20 crop models by Apr 2016
50 crop models by Mar 2017

Root Crops (7)

- Carrot (3)
- Parsnip (4)

Brassicas (15)

- Broccoli (4)
- Cabbage (6)
- Cauliflower (3)
- Kale (2)
- Leafy crops (7)
 - Spinach (4)
 - Lettuce (3)

Data collection & model development

Data sets: 1 data set = crop development observations paired with daily max/min temperature records:

- 8-10 data sets to verify thresholds for a crop
- 4-6 data sets to verify thermal time to maturity for a variety

Supports broccoli thresholds 32/70F

Thermal time to maturity

Transplanted broccoli 32/70F, SSHCO	50% head initiation	First harvest	Early flowering	Accuracy (± days)
Arcadia (TP)	1674	2281	2672	2.5
Green Magic (TP)	1458	2103	2456	4.1
Emerald Pride (TP)	1565	2151	2518	6.4
Imperial (TP)	1753	2383	2688	4.6
		~10 days diff. between varietie	s	± 3-6 days with DDs

± 15 days in catalogs for Arcadia

Thermal time to maturity

Cucumber 50/90F, SSHCO	Туре	2 true leaves	Early flowering	First harvest	Accuracy (± days)
Cobra (DS)	Slicing	339	665	964	2.5
Marketmore-76 (DS)	Slicing	364	784	1211	1.1
Marketmore-76 (TP)	Slicing	-	344	805	1.9
Dasher II (DS)	Slicing	365	731	1060	1.8
Zapata (DS)	Pickling	380	688	984	2.7
Extreme (DS)	Pickling	366	692	946	1.2
Supremo (DS)	Pickling	366	677	981	0.8

~12 days diff. between varieties ± 1-3 days accuracy

Using Croptime

steps

1. Search for Croptime <u>http://smallfarms.oregonstate.edu/croptime</u>

	NCI								
		sma	ll Far	ms					
	Home	About Us	Crops	Grains	Livestock	Pastures	Soils	Marke	
	Home								
	CROP	TIME							
	We are deve and automat	eloping this website tic weather stations	e to help veget s available thre	able growers r ough OSU's Int	nake farming decis egrated Plant Prote	tions using degree	e-day models osites.	\$	
	The CROPT developmen	FIME website will be it of vegetable varie	e launched pu ty models. In	blicly in 2015. this project we	CROPTIME will be are developing:	set up to encour	age open sou	urce	
	More than 70 degree-day (DD) models to predict maturity dates for vegetable varieties.								
	Six weed DD models to help you prevent weeds going to seed.								
	A DD nitrogen tool to help you make nitrogen available when your crop needs it.								
(CROPTIN	VIE Calculator							
	This calculat the US. We	tor is part of the Os are developing the	SU-IPPC mod vegetable, we	eling site and is ed and nitroge	s linked to 15,000 a n models to help y	automatic weather ou manage crops	stations aro Follow the	und se	

MODEL INPUTS

Model species/general links	broccoli-Arcadia [Arcadia]
Туре	crop
Model source/other links	Andrews etal 2015
Calculation method	
Lower threshold	32 degrees Fahrenheit
Upper threshold	72 degrees Fahrenheit
Directions for starting/BIOFIX	date of transplant at 2-4 true leaves
Starting date(s)	4-1,5-1,6-1,7-1 2015
Ending date	12-1
Model validation status	new model-not yet validated
Region of known use	W. Oregon
Short day critical day length (hr)	12.0

EVENTS TABLE

DDs after transplant:	Model Event
5	transplanted - 2-4 leaves
1762	50% head initiation
2344	first harvest
2734	early flowering

Da	ate	Tei	mp/P	recip	DD	Day length	Cum DD		Crop events
र	5		7,7	7	75			75	
Ionth	Dav	Max	Min	Precip		Day length (br)	QA +	•	Starting 4-1
nonun	Day	WIGA	WIIII	Frecip	DDS TOday	Day length (III)	Notes	Cumu. DDs	Model Events
4	1	53.0	40.1	0.10	14.6	13.1		15	transplanted - 2-4 leaves
5	1	73.8	45.6	0.00	27.5	14.6		612	
6	1	62.5	53.9	0.21	26.2	15.8		1458	
6	11	81.4	49.9	0.00	31.4	16.0		1780	50% head initiation
6	28	83.6	66.3	0.00	38.6	16.0		2351	first harvest
7	1	95.4	57.9	0.00	36.2	16.0		2461	
7	9	85.2	59.8	0.00	36.2	15.9		2751	early flowering
7	14	83.4	57.6	0.00	35.1	15.8		2930	
7	22	72.1	53.1	0.00	30.6	15.5		3205	
7	26	72.7	55.6	0.03	32.1	Scroll	riaht	for othe	
8	8	79.7	56.2	0.00	34.0				
8	19	97.6	59.7	0.00	36.9	pia	nting	dates	
8	20	81.1	58.4	0.00	35.2	14.3		4214	
9	7	74.5	52.2	0.00	31.0	13.3		4787	
9	20	77.7	52.6	0.00	32.0	12.7		5190	

2 nd planting				3	rd planting	4	th planting	
Month	Day		Starting 5-1			Starting 6-1		Starting 7-1
-		Cumu. DDs	Model Even	its	Cumu. DDs	Model Events	Cumu. DDs	Model Events
TP	da	ates	transplanted - 2-4	s Se	eed ca	atalogs esti	mate 6	63-94 DTM
v	1	010			In	W OR we s	saw 66	6-103 DTM
Арі	1	= 88	DTM nitia	ation	919			
7	1 a	1877 2166			1) 1; D	earee-dav	model	s use local
Ma	\mathbf{v}	1 = 74	DTM ^(es)	t	1			
IVIC	У	· — / ·			1 ¹ Tel	mperature d	data, to	precasts or
.lur	1	= 68		ng		nistorical av	erage	s to predict
	~~	_ 00			2	harvest	within	a few days
Jul	1	= 68 [DTM		3355		2362	first harvest
<u> </u>	20				3758		2765	early flowering

Transplanted Arcadia brocolli Aurora, OR, 2011-2015

Croptime weed models

Weed models can help farmers answer the following questions:

When can I stop cultivating?

Do I need to send in a crew to hand weed before harvest to prevent seed set?

Should I remove weeds from field?

Can the harvest crew just focus on specific weeds?

Farmer's choice

Lambsquarter

Hairy

Pigweed

Croptime weed models reduce uncertainty

Do you think the seeds in this flower head are viable?

Grower #1 - **35-50%** Grower #2 - **None**

Lab results – ~50% viable

Is the GDD model better than days alone?

Hairy Nightshade								
	Cotyledon to First Flower (Days)	Cotyledon to First Flower (DD)						
	32 (22-44)	766						
CV (%)	25	20	12	9				

How to use weed models

Identify weed & emergence date

Input into model Estimate of first germinable seed

The model

- Model most appropriate for late April through early July plantings
 - Influence of photoperiod on growth not considered
- Start date = cotyledon
 - Hard to identify some weeds at cotyledon stage
 - Use first flush of weeds after cultivation as start date?
- Combine with in-field observations

Output

Month	Dav	Starting 6-1					
wonth	Day	Model Events					
6	1	cotyledon present					
6	7	2 leaves present					
6	13	4-5 leaves present					
6	20	6-7 leaves present					
6	28	first flowering					
7	26	lower 95% CI first viable seed	Low risk				
7	31	average first viable seed	Moderate				
8	4	upper 95% CI first viable seed	High risk				

Avoid this! Reduce future weed pressure by using weed models in conjunction with crop models to minimize the risk of seed set occurring before harvest

Forecast Options for DD Models Len Coop, OSU Integrated Plant Protection Center

Forecast Options

- Uses recorded temps up to the day before a model is run
- Uses 7-day forecasts
- Long-term forecast options:
 - NEW 7-month seasonal climate forecast
 - 10-year average
 - 30-year average

broccoli-Arcadia [Arcadia]

crop model of <u>Andrews et al 2016</u> Output from <u>uspest.org/wea</u> insect degree-day/phenology model program: Heat Units and predictions of key events from daily weather data

MODEL INPUTS

Model species/general links	broccoli-Arcadia [Arcadia]						MODEL OUTPUT		
Туре	crop								
Model source/other links	Andrews et al 2016						w/ NMME ·		
Calculation method	single sine curve								
Lower threshold	32 degrees Fahrenheit						/	/	
Upper threshold	70 degrees Fahrenheit								
Directions for starting/BIOFIX date of transplant at 2-4 true leaves									
Starting date(s)	1-10 2016								
Ending date	12-1						23.0		500
Model validation status	new model-not yet fully validated					21.0		521	
Region of known use	W. Oregon						23.5		544
Extended forecast type	After 7 days, use	ter 7 days, use 7-month NMME based seasonal climate forecast					18.5		563
		2	± /	03.0	40.0	0.04	22.5		585
		2	18	51.0	43.0	0.39	15.0		600
		2	19	49.7	43.3	0.246	14.5	Fx Fn forecast	615
		2	20	53.9	34.5	0.042	12.2	<u>Fx Fn</u>	627
		2	21	49.7	31.8	0.095	8.8	<u>Fx Fn</u>	636
		2	22	52.1	31.7	0.006	9.9	<u>Fx Fn</u>	646
		2	23	62.7	33.2	0.00	15.9	Fx Fn	662
		2	24	55.4	38.6	0.165	15.0	NMME	677
		2	25	55.6	38.7	0.163	15.2	NMME	692
		2	26	55.8	38.8	0.162	15.3	NMME	707
		2	27	56.0	38.9	0.16	15.4	NMME	723
		2	28	56.2	39.0	0.158	15.6	NMME	738
		2	29	56.2	39.1	0.158	15.7	NMME	754
		Month	Day	Max	Min	Precip	DDs Today	QA + Notes	Cumu. DDs

Is recent climate wellpredicted by 30-year Normals? OSU/WSU/Fox Weather have a grant to add NOAA extended weather/climate forecasts into models at uspest.org

Many studies linking sea surface temperatures to future climate = one form of "teleconnection" or statistical correlation of climate anomalies at large distances

Our Project is using NOAA ensemble extended weather/climate forecasts (NMME) (e.g. March 2016)

Current & Forecast El Nino is a major part of the forecast

