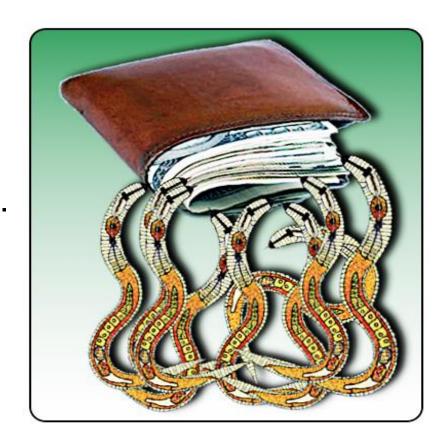
MANAGING PLANT-PARASITIC NEMATODES USING ORGANIC FARMING APPROACHES

Philip Waisen and K.-H. Wang



Root-knot and Reniform Nematodes

- Worldwide there are > 4,100 species of plant-parasitic nematodes.
- \$100 billion/yr loss worldwide.
- \$10 billion/yr loss in USA.
- Root-knot nematodes can cause 20-38% crop loss.

Root-knot Nematodes



Blemishes on cross section of a potato tuber

Split roots of carrot

Picture: Society of Nematologists

Kona root-knot nematodes on coffee

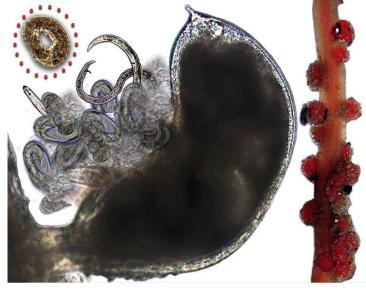
Picture: Koon-Hui Wang

Cucurbit crops are most susceptible

Reniform Nematodes

Crops in Hawaii most damaged by Reniform nematode

Pineapple



Cowpea

Sweet potato

Broad host range

Sunn hemp
Crotalaria juncea
-- monocrotaline

Cover Crops Suppressive to Plantparasitic Nematodes

French Marigold

Tagetes patula

-- α-terthinyl

Sorghum-sudangrass
-- Dhurrin

Radish and mustard -- glucosinolate

The Secret of Sunn Hemp in Suppressing Plant-parasitic Nematodes

Mechanisms:

- 1. Serves as a poor host
- 2. Allelopathic
- 3. Enhance nematode-trapping fungi
- 4. Enhance beneficial nematodes and soil arthropods, increase plant tolerance

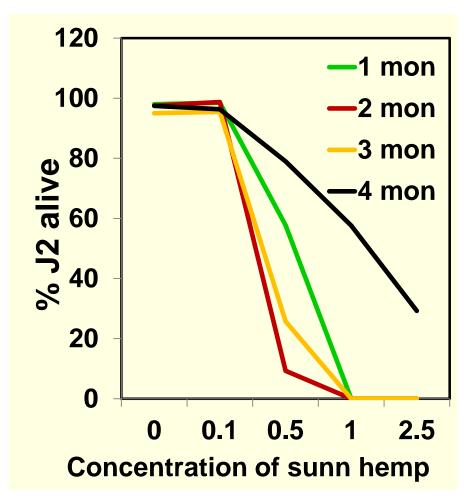
Sunn hemp superhero video: http://www.youtube.com/watch?v=AG_CYsVmqN4

Hānai 'Ai

Hānai'Ai Newsletter June-July-August 2012. http://www.ctahr.hawaii.edu/sustainag/news/articles/V12-Wang-Allelopathic.pdf

Effect of crop age, tissues, and biomass amount on SH allelopathic effects

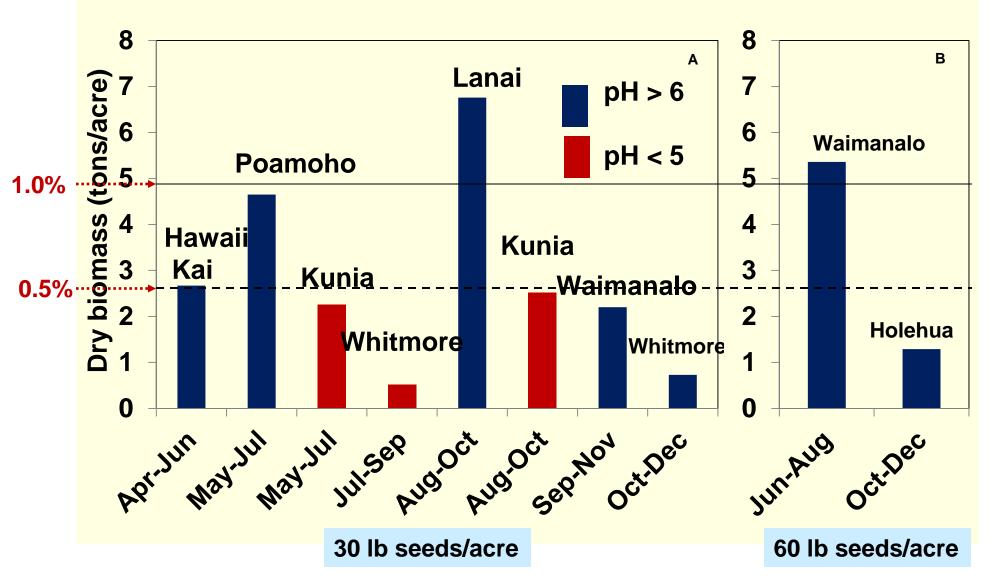
1 month


2 month

3 month

4 month

4 dishes 2 trials


Effect of crop age, tissues, and biomass amount on SH allelopathic effects

- SH Leaf tissue was most suppressive, and the result resembled those in the whole plant tissues.
- Suppressive effect of SH is most significant at 2- and 3-month old.

Conc (%)	Dry Biomass (tons/acre)		
0.1	0.5		
0.5	2.5		
1	5		
2.5	12.5		

Can we achieve 2.5 to 5 tons dry biomass in Hawaii?

Managing Reniform Nematodes with Sunn Hemp

Vermiform stage of reniform nematodes are easier to kill than the

anhydrobiotic stage.

■SH+ ■SH-50 100

1000

anhydrobiotic

Vermiform stage

** Reniform nematode 10 SH Dry

SH+ = Soil amended with sunn hemp

Irr = land irrigated

SH = planted with sunn hemp

CP = planted with cowpea

Thus, farmers should plant sunn hemp soon after termination of a sweet potato crop.

Sunn hemp Crotalaria juncea -- monocrotaline

Cover Crops Suppressive to Plantparasitic Nematodes

French Marigold Tagetes patula -- α -terthinyl

Sorghum-sudangrass -- Dhurrin

Radish and mustard -- glucosinolate

MANAGING PLANT-PARASITIC NEMATODES USING TRAP CROPPING AND BIOFUMIGATION

Philip Waisen* and K.-H. Wang

Plant-parasitic Nematodes

Sunn hemp
Crotalaria juncea
-- monocrotaline

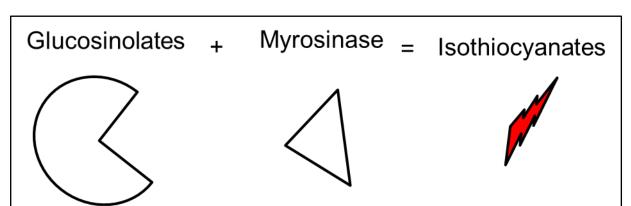
- > 4,100 species of plant-parasitic nematodes are known
- \$100 billion/yr loss worldwide
- \$10 billion/yr loss in USA
- Root-knot nematodes can cause 20-38% crop loss
- Especially damaging to cucurbit crop (no resistant cultivars)
- Cover crops provide great potential to suppress plantparasitic nematodes.

French Marigold

Tagetes patula

-- α-terthinyl

Sorghum-sudangrass
-- Dhurrin



Radish and mustard
-- glucosinolate

Glucosinolates

Oil Radish and Mustard as Biofumigants

Weed whacked

Isothiocyanates

Soil incorporated

More isothiocyanates

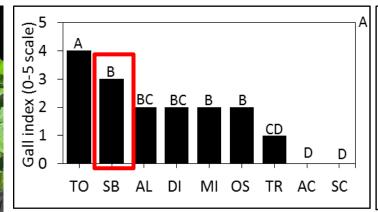
Cover with black plastic

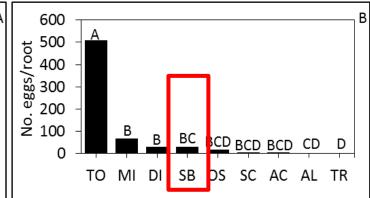
Trap isothiocyanates

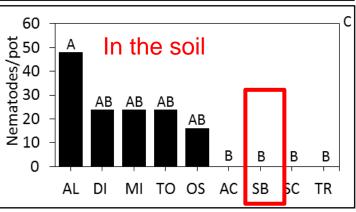
Oil radish and Mustard as Trap Crops

Trap crop

	Root-knot nematode	Reniform nematode	Trap cropping effect	
Oil radish	Poor host	Poor host	Slightly	
Mustard	Excellent host	Non-host	Good for root-knot	

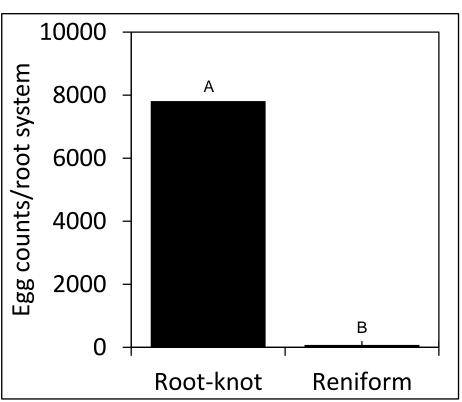



Objectives


- To screen oil radish and mustard cultivars for trap cropping and biofumigation effects against root-knot and reniform nematodes.
- To determine best termination time of oil radish in a field trial.
- To determine best cultural practices for biofumigation effects.

1.1 Susceptibility of radish cultivars to M. javanica

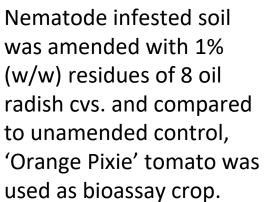
Radish cvs	Price
Alpine	\$98.22/lb
April Cross	\$112/ 10 million seeds
Discovery	N/A
Miyashige	\$76.50/lb
Oshine	\$169.95/lb
Sodbuster	\$2.25/lb
Summer Cross	\$147.90/lb
Tillage Radish	\$3.72/lb



8 oil radish cvs + 'Orange Pixie' tomato inoculated with root-knot nematodes, examine for 1 month.

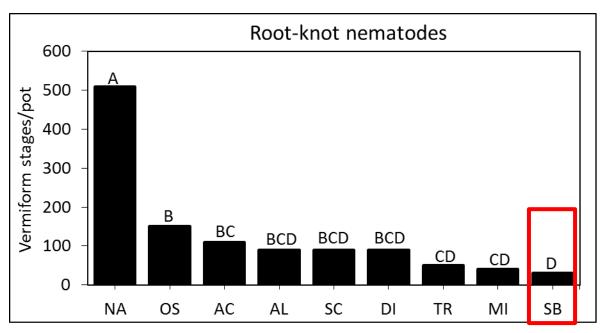
A) Radish gall index; B) Nematodes/250 cm³ soil; C) Nematodes/4-L pot

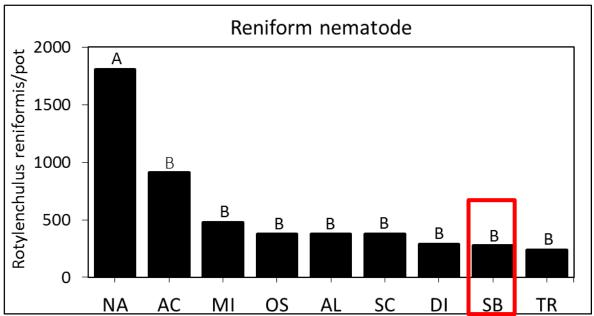
Susceptibility of 'Caliente 199' mustard to root-knot and reniform nematodes



'Caliente 199' mustard is an excellent host for root-knot nematode (*M. javanica*) whereas it is a poor host for reniform nematode (P*i*=1000 IJ2s)

Biofumigation Effect


Starting nematode populations


Root-knot = 2130Reniform = 2270

Plant growth difference on tomato 'Orange Pixie'

Biofumigation Effect of Oil Radish to root-knot and reniform nematodes

NA = no amendment; AC = April Cross; AL = Alpine; MI = Miyashige; OS = Oshin; SB = Sodbuster; SC = Summer Cross; TR = Tillage Radish

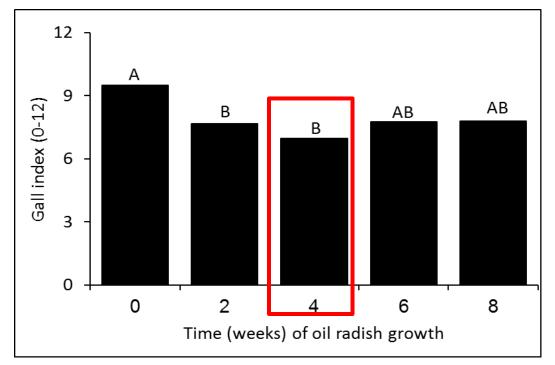
Objectives

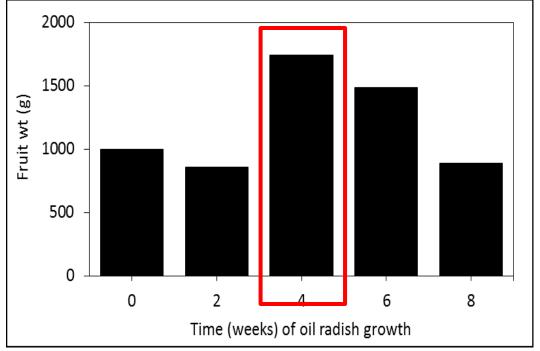
- > To screen oil radish and mustard cultivars for trap cropping and biofumigation effects against root-knot and reniform nematodes.
- To determine best termination time of oil radish in a field trial.
- To determine best cultural practices for biofumigation effects.

Field Trial

Oil radish was planted for different length of time (0, 2, 4, 6 and 8 weeks). Experiment was arranged in RCBD with 4 replications. Pumpkin was planted after oil radish (OR) termination and incoporation, nematodes were sampled at OR termination and at 4 weeks after pumpkin planting.

Severity of pumpkin root galls by root-knot nematodes


Root Gall Index based on 0 – 12 scale



Oil radish did not suppress PPN in the soil but reduce root galls on pumpkin

Repeated measure over 3 sampling dates at monthly interval

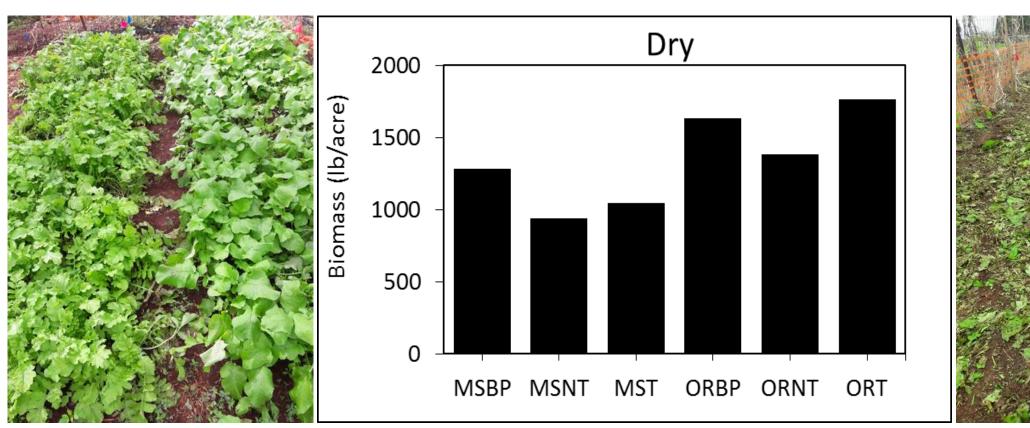
	Nematodes/250 cm ³ soil					
Herbivores	0	2	4	6	8	
Root-knot nemamtode	178 A	140 A	213 A	160 A	467 A	
Reniform nematode	371 A	256 A	874 A	168 A	312 A	
Stubby root nematode	36 A	20 A	32 A	22 A	33 A	

Objectives

- > To screen oil radish and mustard cultivars for trap cropping and biofumigation effects against root-knot and reniform nematodes.
- > To determine best termination time of oil radish in a field trial.
- To determine best cultural practices for biofumigation effects.

Materials and methods

Cover crop termination and biofumigation


7 Treatments

- 1) ORT=oil radish + weed whack + till
- 2) ORBP=oil radish + weed whack + till + black plastic
- 3) ORNT=oil radish + sickle + weed mat (=NT)

- 4) MST=mustard + weed whack + till
- 5) MSBP=mustard + weed whack + till + black plastic
- 6) MSNT=mustard+sickle + weed mat (NT)
- 7) BG=Bare ground

Materials and methods

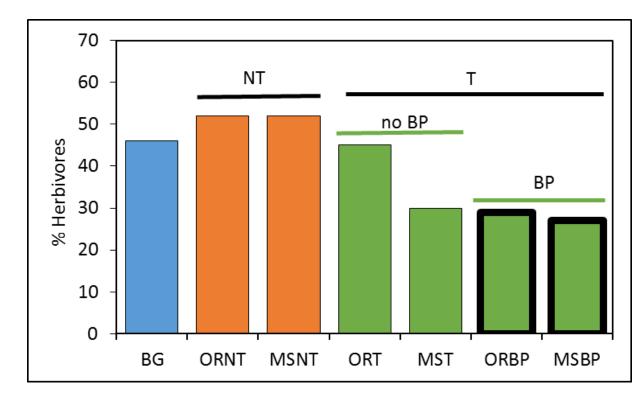
Biomass production

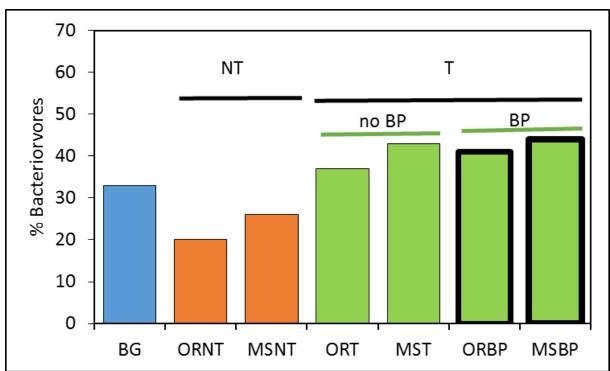
1) ORT=oil radish + weed whack + till; 2) ORBP=oil radish + weed whack + till + black plastic; 3) ORNT=oil radish + sickle + weed mat; 4) MST=mustard + weed whack + till; 5) MSBP= mustard + weed whack + till + black plastic; 6) MSNT=mustard + sickle + weed mat; 7) Bare ground control

Materials and methods

Cover crop termination and biofumigation

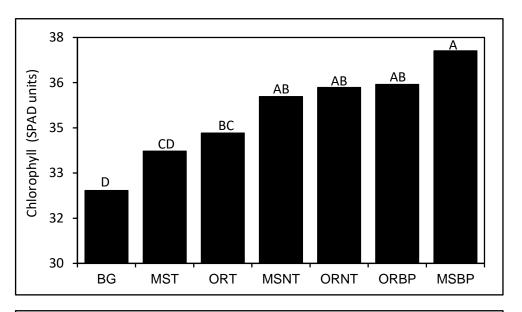
1 week after covering weed mat

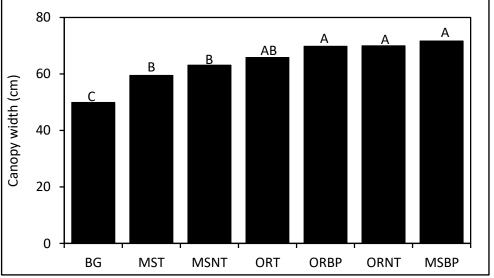



1 week after covering black plastic

'Felix' zucchini transplanted at 3 ft spacing

Biofumigation effects of oil radish and mustard on nematodes




1) ORT=oil radish + weed whack + till; 2) ORBP=oil radish + weed whack + till + black plastic; 3) ORNT=oil radish + sickle + weed mat; 4) MST=mustard + weed whack + till; 5) MSBP= mustard + weed whack + till + black plastic; 6) MSNT=mustard + sickle + weed mat; 7) Bare ground control

Plant growth after incorporation of radish and mustard green manures

2 weeks after planting

Conclusions

- 'Sodbuster' oil radish is a potential conventional trap crop and a good biofumigant cultivar against root-knot and reniform nematodes.
- Terminating oil radish at 4 weeks reduced galling on pumpkin and increased the total fruit weight (74%).
- Weed whacking oil radish or mustard + till + covering black plastic for 1 week reduced plant-parasitic nematodes by 39%.

Acknowledgements

Funding source

College of Tropical Agriculture and Human Resources

Adviser: Dr. Koon-Hui Wang

Dissertation committees: Dr. Brent Sipes, Dr. Zhiqiang Cheng, Dr. Joe

DeFrank and Dr. James Leary

Shelby Ching Josiah Marquez Jonathan Kam Bishnu Bandari

Technical support staff: Donna Meyer, Gareth Nagai and Steve Yoshida

Poamoho Experiment Station: Farm crew Jari Sugano

Extension Agents: Jari Sugano and Jensen Uyeda

