Rapid Onsite Soil Nitrate Testing for Farmers

Mitchell Loo

TPSS Graduate Research Assistant

Nitrogen Fertilizer Decision-making

Optimum N fertilizer for maximizing yields???

$$N_{fert} = N_{crop} - N_{smn} - N_{min}$$

- Today's Presentation
- Soil Nitrate Quick Test (SNQT)
 - Rapid
 - Onsite
 - No delay or high cost associated with laboratory analysis

What is the SNQT

- Onsite soil nitrate testing protocol
 - Extraction
 - Determination
- Developed and most recently modified by Hartz (2000)
 - Simple
 - Convenient
 - Universal
 - Cost effective

What is the SNQT

- Onsite soil nitrate testing protocol
 - Extraction
 - Determination
- Developed and most recently modified by Hartz (2000)
 - Simple
 - Convenient
 - Universal
 - Cost effective

• 30 ml of extracting solution

- 30 ml of extracting solution
- 10 ml of soil (moist)

- 30 ml of extracting solution
- 10 ml of soil (moist)
- Shake by hand for 5 minutes

Tiziana Ruiz: NREM undergraduate student technician (Spring 2017)

- 30 ml of extracting solution
- 10 ml of soil (moist)
- Shake by hand for 5 minutes
- Wait for soil to settle out of solution
- Use clear solution zone at the top for nitrate determination

Determination

Test strip

- EMD Millipore Corporation, Billerica, MA
- Dip into clear zone (2 sec)
- Colorimetric development
 - 60 seconds
- Determination
 - Quantitative (reflectoquant)
 - Semi-Quantitative (color chart)
- Interpretation
 - Reading is given in mg L⁻¹ (NO₃-)
 - Convert to mg kg⁻¹ (NO₃-N)

Determination

Test strip

- EMD Millipore Corporation, Billerica, MA
- Dip into clear zone (2 sec)
- Colorimetric development
 - 60 seconds
- Determination
 - Quantitative (reflectoquant)
 - Semi-Quantitative (color chart)
- Interpretation
 - Reading is given in mg L⁻¹ (NO₃-)
 - Convert to mg kg⁻¹ (NO₃-N)

Determination

Test strip

- EMD Millipore Corporation, Billerica, MA
- Dip into clear zone (2 sec)
- Colorimetric development
 - 60 seconds
- Determination
 - Quantitative (reflectoquant)
 - Semi-Quantitative (color chart)
- Interpretation
 - Reading is given in mg L⁻¹ (NO₃-)
 - Convert to mg kg⁻¹ (NO₃-N)

Test strip color development rxn

- Nitrate ions are reduced to Nitrite ions (Griess reagent)
- Nitrite form diazonium salt
- Diazonium salt reacts with N-(1-napthyl)ethylene-diamine
- Forms a red-violet azo dye
- First applied to field soil testing back in 1979 in Wellesbourne England (Hunt et, al. 1979)

Nitrate Determination

- Semi-Quantitative
 - -1979
 - Use of standards to develop color chart
 - Test strip color development read visually

- Quantitative
 - Schaefer (1986) Australia
 - Reflectometer for blood glucose adapted levels modified to read nitrate concentration

Interpretation of test result

- Results given in mg L⁻¹ (NO₃⁻)
- As a PSNT Field calibrated thresholds in the literature have been developed for various vegetable crops
 - Reported in mg kg⁻¹ (NO₃-N)
- Convert using dimensional analysis

Calculation

Nitrate content [mg/kg] = Measured value [mg/l] x Vol. CaCl₂ sol.[ml]

Weight of sample [g]

- Need measures of:
 - Volume of extractant (ml)
 - Mass of soil sample (mg)
 - Mole fraction of nitrogen in an ion of nitrate.226

Correction factors

- Hartz (1994)
- Developed correction factors for soil samples of various soil texture and moisture content during time of sampling.

strip reading + correction factor = PPM NO₃-N in dry soil

Soil texture	Correction factor	
	Moist soil	Dry soil
sand	2.3	2.6
loam	2.0	2.4
clay	1.7	2.2

Wahiawa soil series correction factor

Table 3.2. Empirically derived correction factor

Soil Moisture	Correction Factor	
Dry	2.2	
Wet	2.0	
Very wet	1.7	

Test strip reading (NO₃ mg L^{-1}) ÷ correction factor = NO₃-N mg kg^{-1}

My Research Activities

- 1. Assessed the accuracy of the SNQT in Hawaii Soils.
- Field Calibrated SNQT results to crop performance and developed action thresholds for Napa cabbage grown on the Wahiawa series.
- 3. Characterized soil nitrate dynamics in relation to commercial N fertilizer practices for 6 different crops of selected brassicas on three different commercial farms.

My Research Activities

- Assessed the accuracy of the SNQT in Hawaii Soils.
- Field Calibrated SNQT results to crop performance and developed action thresholds for Napa cabbage grown on the Wahiawa series.
- 3. Characterized soil nitrate dynamics in relation to commercial N fertilizer practices for 6 different crops of selected brassicas.

Range of Soil Types Present in Hawaii

Ustox (n=56)

Ustolls (n=3)

Cambids (n=4)

Ustands (n=3)

Udands (n=3)

Torrert (n=3)

Compared Test Results of Two Methods

Results

Literature review

- Hartz (1994)
- Hartz (2000)
- Schmidhalter (2005)
- Conducted similar regressions between the two testing methods
- Similar coefficient of determination (r²)
- SNQT slightly under estimated nitrate concentration

My Research Activities

- Assessed the accuracy of the SNQT in Hawaii Soils.
- Field Calibrated SNQT results to crop performance and developed action thresholds for Napa cabbage grown on the Wahiawa series.
- 3. Characterized soil nitrate dynamics in relation to commercial N fertilizer practices for 6 different crops of selected brassicas.

Fertilizer Rate Experiment

- Poamoho Research Station
- Wahiawa soil series
- Napa cabbage

Data Collection

Monitored weekly soil nitrate levels using the SNQT

Results

- SNQT most useful when used 2 weeks after planting for Napa cabbage
- Critical threshold 2 weeks after planting was 32- 38 mg kg⁻¹

Literature review

Previous studies have found the soil NO₃-N critical concentration to be roughly 20-25 mg kg⁻¹

- Iceberg and romaine lettuce in California soils (Breschini and Hartz, 2002)
- Sweet corn in New Jersey soils (Heckman et al., 1995)
- Fall cabbage in New Jersey, Deleware, and Conneticut (Heckman et al., 2002)
- Tomatoes in California (Krusekopf et al., 2002)

My Research Activities

- Assessed the accuracy of the SNQT in Hawaii Soils.
- Field Calibrated SNQT results to crop performance and developed action thresholds for Napa cabbage grown on the Wahiawa series.
- 3. Characterized soil nitrate dynamics in relation to commercial N fertilizer practices for 6 different crops of selected brassicas.

Characterization of soil nitrate dynamics

Helemano Farm Site: Summer 2016 Wahiawa soil series (Ustox)

Crops: head cabbage, napa cabbage,

broccoli

Waipio Farm Site: Fall 2016 Wahiawa soil series (Ustox)

Crops: head cabbage, napa cabbage

Ewa Plains Farm Site: Spring 2017 Hono'uli'uli soil series (Torrets)

Crops: head cabbage

Soil nitrate collection

- Soil nitrate levels collected weekly through out crop duration.
- Plotted in relation to crop N uptake

Impacts

- Farmer was able to make more informative N fertilizer decisions after we presented data on crop growth, N fertilizer inputs, and soil nitrate dynamics
- In the second round of head cabbage, the farmer greatly reduced N fertilizer and synchronized applications to the time of greatest demand
- No yield reduction

Conclusion

 SNQT seems like a promising N diagnostic tool for Hawaii farmers

- However...
- Hawaii has a diversity of soils and transfer of technology across sites and crops is not trivial
- There is still much R and D that must be done before the SNQT can be widely adopted in Hawaii

References

- Breschini S.J., Hartz T.K. (2002) Presidedress soil nitrate testing reduces nitrogen fertilizer use and nitrate leaching hazard in lettuce production. Hortscience 37:1061-1064
- Hartz, T.K., 1994. A quick test procedure for soil nitrate-nitrogen. Communications in soil science and plant analysis, 25(5-6), pp.511-515.
- Hartz T.K., Bendixen W.E., Wierdsma L. (2000) The value of presidedress soil nitrate testing as a nitrogen management tool in irrigated vegetable production. Hortscience 35:651-656.
- Heckman J.R., Hlubik W.T., Prostak D.J., Paterson J.W. (1995) PRE-SIDEDRESS SOIL NITRATE TEST FOR SWEET CORN. Hortscience 30:1033-1036.
- Heckman J.R., Morris T., Sims J.T., Sieczka J.B., Krogmann U., Nitzsche P., Ashley R. (2002) Pre-sidedress soil nitrate test is effective for fall cabbage. Hortscience 37:113-117.
- Hunt, J., Ng, W.Y., Barnes, A. and Greenwood, D.J., 1979. A rapid method for estimating nitrate-nitrogen concentration in field soils. Journal of the Science of Food and Agriculture, 30(4), pp.343-353.
- Krusekopf H.H., Mitchell J.P., Hartz T.K., May D.M., Miyao E.M., Cahn M.D. (2002) Presidedress soil nitrate testing identifies processing tomato fields not requiring sidedress N fertilizer. Hortscience 37:520-524.
- Schaefer, N.L., 1986. Evaluation of a hand held reflectometer for rapid quantitative determination of nitrate. Communications in soil science and plant analysis, 17(9), pp. 937-951.
- Schmidhalter, U., 2005. Development of a quick on-farm test to determine nitrate levels in soil. Journal of Plant Nutrition and Soil Science, 168(4), pp.432-438.

Questions

